When you try to draw something on the screen, your code calls some other piece of code which calls some other code (etc.) until finally there is a "system call", which is a special instruction that the CPU can execute. These instructions can be either written in assembly or can be written in C++ if the compiler supports their "intrinsics" (which are functions that the compiler handles "specially" by converting them into special code that the CPU can understand). Their job is to tell the operating system to do something.
When a system call happens, a function gets called that calls another function (etc.) until finally the display driver is told to draw something on the screen. At that point, the display driver looks at a particular region in physical memory which is actually not memory, but rather an address range that can be written to as if it were memory. Instead, however, writing to that address range causes the graphics hardware to intercept the memory write, and draw something on the screen.
Writing to this region of memory is something that could be coded in C++, since on the software side it's just a regular memory access. It's just that the hardware handles it differently.
So that's a really basic explanation of how it can work.