I like some features of D, but would be interested if they come with a runtime penalty?
To compare, I implemented a simple program that computes scalar products of m
One big thing that slows D down is a subpar garbage collection implementation. Benchmarks that don't heavily stress the GC will show very similar performance to C and C++ code compiled with the same compiler backend. Benchmarks that do heavily stress the GC will show that D performs abysmally. Rest assured, though, this is a single (albeit severe) quality-of-implementation issue, not a baked-in guarantee of slowness. Also, D gives you the ability to opt out of GC and tune memory management in performance-critical bits, while still using it in the less performance-critical 95% of your code.
I've put some effort into improving GC performance lately and the results have been rather dramatic, at least on synthetic benchmarks. Hopefully these changes will be integrated into one of the next few releases and will mitigate the issue.