I have the following data.table
initial.date <- as.POSIXct(\'2018-10-27 10:00:00\',tz=\'GMT\')
last.date <- as.POSIXct(\'2018-12-28 17:00:
OP did not mention the size of the new dataset. But a Rcpp
solution should speed things up.
As per previous comment:
mtd1 <- function() {
ndf[, rn:=.I]
iidx <- ndf[
.(inst=InstrumentSymbol, prevMin=datetime-60L, nextMin=datetime+60L, idx=id, tp=TradePrice),
.SD[id != idx, rn[which.min(abs(TradePrice - tp))]],
by=.EACHI,
on=.(InstrumentSymbol=inst, datetime>=prevMin, datetime<=nextMin)];
ndf[, c("minpricewithin60", "index.minpricewithin60") := .SD[iidx$V1, .(TradePrice, id)]]
}
arg0naut's approach:
mtd2 <- function() {
res2[, `:=` (min_60 = datetime - 60, plus_60 = datetime + 60, idx = .I)][
res2, on = .(InstrumentSymbol = InstrumentSymbol, datetime >= min_60, datetime <= plus_60), allow.cartesian = TRUE][
idx != i.idx, .SD[which.min(abs(i.TradePrice - TradePrice))], by = id][
, .(id, minpricewithin60 = i.TradePrice, index.minpricewithin60 = i.idx)][
res, on = .(id)][, `:=` (min_60 = NULL, plus_60 = NULL, idx = NULL)]
}
A possible Rcpp approach:
library(Rcpp)
cppFunction('
NumericVector nearestPrice(NumericVector id, NumericVector datetime, NumericVector price) {
int i, j, n = id.size();
NumericVector res(n);
double prev, diff;
for (i=0; i= datetime[i]-60 && j>=0) {
diff = std::abs(price[i] - price[j]);
if (diff < prev) {
res[i] = id[j];
prev = diff;
}
j--;
}
j = i+1;
while (datetime[j] <= datetime[i]+60 && j<=n) {
diff = std::abs(price[i] - price[j]);
if (diff < prev) {
res[i] = id[j];
prev = diff;
}
j++;
}
}
return(res);
}
')
mtd3 <- function() {
setorder(ndf2, InstrumentSymbol, PriorityDateTime)
iidx <- ndf2[, nearestPrice(.I, datetime, TradePrice), by=.(InstrumentSymbol)]
ndf2[, c("minpricewithin60", "index.minpricewithin60") := .SD[iidx$V1, .(TradePrice, id)]]
}
timing code:
library(microbenchmark)
microbenchmark(mtd1(), mtd2(), mtd3(), times=3L)
timings:
Unit: milliseconds
expr min lq mean median uq max neval
mtd1() 49447.09713 49457.12408 49528.14395 49467.15103 49568.66737 49670.18371 3
mtd2() 64189.67241 64343.67138 64656.40058 64497.67034 64889.76466 65281.85899 3
mtd3() 17.33116 19.58716 22.36557 21.84316 24.88277 27.92238 3
data:
set.seed(0L)
initial.date <- as.POSIXct('2018-01-01 00:00:00', tz='GMT')
last.date <- initial.date + 30 * (180000/2)
PriorityDateTime <- seq.POSIXt(from=initial.date, to=last.date, by='30 sec')
library(data.table)
ndf <- data.table(PriorityDateTime=c(PriorityDateTime, PriorityDateTime),
TradePrice=rnorm(length(PriorityDateTime)*2, 100, 20),
InstrumentSymbol=rep(c('asset1','asset2'), each=length(PriorityDateTime)),
datetime=c(PriorityDateTime, PriorityDateTime))
setorder(ndf, InstrumentSymbol, PriorityDateTime)[, id := .I]
res <- copy(ndf)
res2 <- copy(ndf)
ndf2 <- copy(ndf)