I\'m reading batch of images by getting idea here from tfrecords(converted by this)
My images are cifar images, [32, 32, 3] and as you can see while reading and pas
You're likely processing the parsed TFRecord example wrong. E.g. trying to reshape a tensor to an incompatible size. You can debug using a tf_record_iterator to confirm the data you're reading is stored the way you think it is:
import tensorflow as tf
import numpy as np
tfrecords_filename = '/path/to/some.tfrecord'
record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename)
for string_record in record_iterator:
# Parse the next example
example = tf.train.Example()
example.ParseFromString(string_record)
# Get the features you stored (change to match your tfrecord writing code)
height = int(example.features.feature['height']
.int64_list
.value[0])
width = int(example.features.feature['width']
.int64_list
.value[0])
img_string = (example.features.feature['image_raw']
.bytes_list
.value[0])
# Convert to a numpy array (change dtype to the datatype you stored)
img_1d = np.fromstring(img_string, dtype=np.float32)
# Print the image shape; does it match your expectations?
print(img_1d.shape)