Assuming I have a bunch of summaries defined like:
loss = ...
tf.scalar_summary(\"loss\", loss)
# ...
summaries = tf.m
You can average store the current sum and recalculate the average after each batch, like:
loss_sum = tf.Variable(0.)
inc_op = tf.assign_add(loss_sum, loss)
clear_op = tf.assign(loss_sum, 0.)
average = loss_sum / batches
tf.scalar_summary("average_loss", average)
sess.run(clear_op)
for i in range(batches):
sess.run([loss, inc_op])
sess.run(average)