I need to calculate combinations for a number.
What is the fastest way to calculate nCp where n>>p?
I need a fast way to generate binomial coefficients for a
If I understand the notation in the question, you don't just want nCp, you actually want all of nC1, nC2, ... nC(n-1). If this is correct, we can leverage the following relationship to make this fairly trivial:
Here's a python snippet implementing this approach:
def binomial_coef_seq(n, k):
"""Returns a list of all binomial terms from choose(n,0) up to choose(n,k)"""
b = [1]
for i in range(1,k+1):
b.append(b[-1] * (n-i+1)/i)
return b
If you need all coefficients up to some k > ceiling(n/2), you can use symmetry to reduce the number of operations you need to perform by stopping at the coefficient for ceiling(n/2) and then just backfilling as far as you need.
import numpy as np
def binomial_coef_seq2(n, k):
"""Returns a list of all binomial terms from choose(n,0) up to choose(n,k)"""
k2 = int(np.ceiling(n/2))
use_symmetry = k > k2
if use_symmetry:
k = k2
b = [1]
for i in range(1, k+1):
b.append(b[-1] * (n-i+1)/i)
if use_symmetry:
v = k2 - (n-k)
b2 = b[-v:]
b.extend(b2)
return b