In a Pandas dataframe, I would like to filter out all the rows that have more than 2 NaN
s.
Essentially, I have 4 columns and I would like to keep only t
The following should work
df.dropna(thresh=2)
See the online docs
What we are doing here is dropping any NaN
rows, where there are 2 or more non NaN
values in a row.
Example:
In [25]:
import pandas as pd
df = pd.DataFrame({'a':[1,2,NaN,4,5], 'b':[NaN,2,NaN,4,5], 'c':[1,2,NaN,NaN,NaN], 'd':[1,2,3,NaN,5]})
df
Out[25]:
a b c d
0 1 NaN 1 1
1 2 2 2 2
2 NaN NaN NaN 3
3 4 4 NaN NaN
4 5 5 NaN 5
[5 rows x 4 columns]
In [26]:
df.dropna(thresh=2)
Out[26]:
a b c d
0 1 NaN 1 1
1 2 2 2 2
3 4 4 NaN NaN
4 5 5 NaN 5
[4 rows x 4 columns]
EDIT
For the above example it works but you should note that you would have to know the number of columns and set the thresh
value appropriately, I thought originally it meant the number of NaN
values but it actually means number of Non NaN
values.