I\'m aware of various discussions of limitations of the multiprocessing module when dealing with functions that are data members of a class (due to Pickling problems).
If you use a fork of multiprocessing
called pathos.multiprocesssing
, you can directly use classes and class methods in multiprocessing's map
functions. This is because dill
is used instead of pickle
or cPickle
, and dill
can serialize almost anything in python.
pathos.multiprocessing
also provides an asynchronous map function… and it can map
functions with multiple arguments (e.g. map(math.pow, [1,2,3], [4,5,6])
)
See: What can multiprocessing and dill do together?
and: http://matthewrocklin.com/blog/work/2013/12/05/Parallelism-and-Serialization/
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>>
>>> p = Pool(4)
>>>
>>> def add(x,y):
... return x+y
...
>>> x = [0,1,2,3]
>>> y = [4,5,6,7]
>>>
>>> p.map(add, x, y)
[4, 6, 8, 10]
>>>
>>> class Test(object):
... def plus(self, x, y):
... return x+y
...
>>> t = Test()
>>>
>>> p.map(Test.plus, [t]*4, x, y)
[4, 6, 8, 10]
>>>
>>> p.map(t.plus, x, y)
[4, 6, 8, 10]
So you can do exactly what you wanted to do, I believe.
Python 2.7.8 (default, Jul 13 2014, 02:29:54)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dill
>>>
>>> class MyClass():
... def __init__(self):
... self.my_args = [1,2,3,4]
... self.output = {}
... def my_single_function(self, arg):
... return arg**2
... def my_parallelized_function(self):
... res = p.map(self.my_single_function, self.my_args)
... self.output = dict(zip(self.my_args, res))
...
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>> p = Pool()
>>>
>>> foo = MyClass()
>>> foo.my_parallelized_function()
>>> foo.output
{1: 1, 2: 4, 3: 9, 4: 16}
>>>
Get the code here: https://github.com/uqfoundation/pathos