I can\'t get my head around this, which is more random?
rand()
OR:
rand() * rand()
I´m f
The accepted answer is quite lovely, but there's another way to answer your question. PachydermPuncher's answer already takes this alternative approach, and I'm just going to expand it out a little.
The easiest way to think about information theory is in terms of the smallest unit of information, a single bit.
In the C standard library, rand()
returns an integer in the range 0 to RAND_MAX
, a limit that may be defined differently depending on the platform. Suppose RAND_MAX
happens to be defined as 2^n - 1
where n
is some integer (this happens to be the case in Microsoft's implementation, where n
is 15). Then we would say that a good implementation would return n
bits of information.
Imagine that rand()
constructs random numbers by flipping a coin to find the value of one bit, and then repeating until it has a batch of 15 bits. Then the bits are independent (the value of any one bit does not influence the likelihood of other bits in the same batch have a certain value). So each bit considered independently is like a random number between 0 and 1 inclusive, and is "evenly distributed" over that range (as likely to be 0 as 1).
The independence of the bits ensures that the numbers represented by batches of bits will also be evenly distributed over their range. This is intuitively obvious: if there are 15 bits, the allowed range is zero to 2^15 - 1
= 32767. Every number in that range is a unique pattern of bits, such as:
010110101110010
and if the bits are independent then no pattern is more likely to occur than any other pattern. So all possible numbers in the range are equally likely. And so the reverse is true: if rand()
produces evenly distributed integers, then those numbers are made of independent bits.
So think of rand()
as a production line for making bits, which just happens to serve them up in batches of arbitrary size. If you don't like the size, break the batches up into individual bits, and then put them back together in whatever quantities you like (though if you need a particular range that is not a power of 2, you need to shrink your numbers, and by far the easiest way to do that is to convert to floating point).
Returning to your original suggestion, suppose you want to go from batches of 15 to batches of 30, ask rand()
for the first number, bit-shift it by 15 places, then add another rand()
to it. That is a way to combine two calls to rand()
without disturbing an even distribution. It works simply because there is no overlap between the locations where you place the bits of information.
This is very different to "stretching" the range of rand()
by multiplying by a constant. For example, if you wanted to double the range of rand()
you could multiply by two - but now you'd only ever get even numbers, and never odd numbers! That's not exactly a smooth distribution and might be a serious problem depending on the application, e.g. a roulette-like game supposedly allowing odd/even bets. (By thinking in terms of bits, you'd avoid that mistake intuitively, because you'd realise that multiplying by two is the same as shifting the bits to the left (greater significance) by one place and filling in the gap with zero. So obviously the amount of information is the same - it just moved a little.)
Such gaps in number ranges can't be griped about in floating point number applications, because floating point ranges inherently have gaps in them that simply cannot be represented at all: an infinite number of missing real numbers exist in the gap between each two representable floating point numbers! So we just have to learn to live with gaps anyway.
As others have warned, intuition is risky in this area, especially because mathematicians can't resist the allure of real numbers, which are horribly confusing things full of gnarly infinities and apparent paradoxes.
But at least if you think it terms of bits, your intuition might get you a little further. Bits are really easy - even computers can understand them.