How can I convert an RDD (org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
) to a Dataframe org.apache.spark.sql.DataFrame
. I converted a datafram
This code works perfectly from Spark 2.x with Scala 2.11
Import necessary classes
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
Create SparkSession
Object, and Here it's spark
val spark: SparkSession = SparkSession.builder.master("local").getOrCreate
val sc = spark.sparkContext // Just used to create test RDDs
Let's an RDD
to make it DataFrame
val rdd = sc.parallelize(
Seq(
("first", Array(2.0, 1.0, 2.1, 5.4)),
("test", Array(1.5, 0.5, 0.9, 3.7)),
("choose", Array(8.0, 2.9, 9.1, 2.5))
)
)
Using SparkSession.createDataFrame(RDD obj)
.
val dfWithoutSchema = spark.createDataFrame(rdd)
dfWithoutSchema.show()
+------+--------------------+
| _1| _2|
+------+--------------------+
| first|[2.0, 1.0, 2.1, 5.4]|
| test|[1.5, 0.5, 0.9, 3.7]|
|choose|[8.0, 2.9, 9.1, 2.5]|
+------+--------------------+
Using SparkSession.createDataFrame(RDD obj)
and specifying column names.
val dfWithSchema = spark.createDataFrame(rdd).toDF("id", "vals")
dfWithSchema.show()
+------+--------------------+
| id| vals|
+------+--------------------+
| first|[2.0, 1.0, 2.1, 5.4]|
| test|[1.5, 0.5, 0.9, 3.7]|
|choose|[8.0, 2.9, 9.1, 2.5]|
+------+--------------------+
This way requires the input rdd
should be of type RDD[Row]
.
val rowsRdd: RDD[Row] = sc.parallelize(
Seq(
Row("first", 2.0, 7.0),
Row("second", 3.5, 2.5),
Row("third", 7.0, 5.9)
)
)
create the schema
val schema = new StructType()
.add(StructField("id", StringType, true))
.add(StructField("val1", DoubleType, true))
.add(StructField("val2", DoubleType, true))
Now apply both rowsRdd
and schema
to createDataFrame()
val df = spark.createDataFrame(rowsRdd, schema)
df.show()
+------+----+----+
| id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+