How to plot the text classification using tf-idf svm sklearn in python

后端 未结 1 633
失恋的感觉
失恋的感觉 2020-12-07 06:09

I have implemented the text classification using tf-idf and SVM by following the tutorial from this tutorial

The classification is working properly. Now I want to pl

1条回答
  •  囚心锁ツ
    2020-12-07 06:53

    First, you need to select only 2 features in order to create the 2-dimensional decision surface plot.

    Example using some synthetic data:

    from sklearn.svm import SVC
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import svm, datasets
    from sklearn.datasets import fetch_20newsgroups
    from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
    from sklearn.pipeline import Pipeline
    import matplotlib.pyplot as plt
    
    newsgroups_train = fetch_20newsgroups(subset='train', 
                                          categories=['alt.atheism', 'sci.space'])
    pipeline = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer())])        
    X = pipeline.fit_transform(newsgroups_train.data).todense()
    
    # Select ONLY 2 features
    X = np.array(X)
    X = X[:, [0,1]]
    y = newsgroups_train.target
    
    def make_meshgrid(x, y, h=.02):
        x_min, x_max = x.min() - 1, x.max() + 1
        y_min, y_max = y.min() - 1, y.max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        return xx, yy
    
    def plot_contours(ax, clf, xx, yy, **params):
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        out = ax.contourf(xx, yy, Z, **params)
        return out
    
    model = svm.SVC(kernel='linear')
    clf = model.fit(X, y)
    
    fig, ax = plt.subplots()
    # title for the plots
    title = ('Decision surface of linear SVC ')
    # Set-up grid for plotting.
    X0, X1 = X[:, 0], X[:, 1]
    xx, yy = make_meshgrid(X0, X1)
    
    plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)
    ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
    ax.set_ylabel('y label here')
    ax.set_xlabel('x label here')
    ax.set_xticks(())
    ax.set_yticks(())
    ax.set_title(title)
    ax.legend()
    plt.show()
    

    RESULTS

    The plot is not nice since we selected randomly only 2 features to create it. One way to make it nice is the following: You could use a univariate ranking method (e.g. ANOVA F-value test) and find the best top-2 features. Then using these top-2 you could create a nice separating surface plot.

    0 讨论(0)
提交回复
热议问题