As the title explains I have a very fundamental programming question which I have just not been able to grok yet. Filtering out all of the (extremely clever) \"In order to
You might be interested in Nisan and Schocken's implementation of functions. The linked pdf is part of a free online course. It describes the second part of a virtual machine implementation in which the student should write a virtual-machine-language-to-machine-language compiler. The function implementation they propose is capable of recursion because it is stack-based.
To introduce you to the function implementation: Consider the following virtual machine code:
If Swift compiled to this virtual machine language, then the following block of Swift code:
mult(a: 2, b: 3) - 4
would compile down to
push constant 2 // Line 1
push constant 3 // Line 2
call mult // Line 3
push constant 4 // Line 4
sub // Line 5
The virtual machine language is designed around a global stack. push constant n
pushes an integer onto this global stack.
After executing lines 1 and 2, the stack looks like:
256: 2 // Argument 0
257: 3 // Argument 1
256
and 257
are memory addresses.
call mult
pushes the return line number (3) onto the stack and allocates space for the function's local variables.
256: 2 // argument 0
257: 3 // argument 1
258: 3 // return line number
259: 0 // local 0
...and it goes-to the label function mult
. The code inside mult
is executed. As a result of executing that code we compute the product of 2 and 3, which is stored in the function's 0th local variable.
256: 2 // argument 0
257: 3 // argument 1
258: 3 // return line number
259: 6 // local 0
Just before return
ing from mult, you will notice the line:
push local 0 // push result
We will push the product onto the stack.
256: 2 // argument 0
257: 3 // argument 1
258: 3 // return line number
259: 6 // local 0
260: 6 // product
When we return, the following happens:
After returning we are ready to execute line 4, and our stack looks like this:
256: 6 // product that we just returned
Now we push 4 onto the stack.
256: 6
257: 4
sub
is a primitive function of the virtual machine language. It takes two arguments and returns its result in the usual address: that of the 0th argument.
Now we have
256: 2 // 6 - 4 = 2
Now that you know how a function call works, it is relatively simple to understand how recursion works. No magic, just a stack.
I have implemented your sumInts
function in this virtual machine language:
function sumInts 0 // `0` means it has no local variables.
label IF
push argument 0
push argument 1
lte
if-goto ELSE_CASE
push constant 0
return
label ELSE_CASE
push constant 2
push argument 0
push constant 1
add
push argument 1
call sumInts // Line 15
add // Line 16
return // Line 17
// End of function
Now I will call it:
push constant 2
push constant 5
call sumInts // Line 21
The code executes and we get all the way to the stopping point where lte
returns false
. This is what the stack looks like at this point:
// First invocation
256: 2 // argument 0
257: 5 // argument 1
258: 21 // return line number
259: 2 // augend
// Second
260: 3 // argument 0
261: 5 // argument 1
262: 15 // return line number
263: 3 // augend
// Third
264: 4 // argument 0
265: 5 // argument 1
266: 15 // return line number
267: 4 // augend
// Fourth
268: 5 // argument 0
269: 5 // argument 1
270: 15 // return line number
271: 5 // augend
// Fifth
272: 6 // argument 0
273: 5 // argument 1
274: 15 // return line number
275: 0 // return value
Now let's "unwind" our recursion. return
0 and goto line 15 and advance.
271: 5
272: 0
Line 16: add
271: 5
Line 17: return
5 and goto line 15 and advance.
267: 4
268: 5
Line 16: add
267: 9
Line 17: return
9 and goto line 15 and advance.
263: 3
264: 9
Line 16: add
263: 12
Line 17: return
12 and goto line 15 and advance.
259: 2
260: 12
Line 16: add
259: 14
Line 17: return
14 and goto line 21 and advance.
256: 14
There you have it. Recursion: Glorified goto
.