Reading the changes in Python 3.1, I found something... unexpected:
The sys.version_info tuple is now a named tuple:
is one of the easiest ways to clean up your code and make it more readable. It self-documents what is happening in the tuple. Namedtuples instances are just as memory efficient as regular tuples as they do not have per-instance dictionaries, making them faster than dictionaries.
from collections import namedtuple
Color = namedtuple('Color', ['hue', 'saturation', 'luminosity'])
p = Color(170, 0.1, 0.6)
if p.saturation >= 0.5:
print "Whew, that is bright!"
if p.luminosity >= 0.5:
print "Wow, that is light"
Without naming each element in the tuple, it would read like this:
p = (170, 0.1, 0.6)
if p[1] >= 0.5:
print "Whew, that is bright!"
if p[2]>= 0.5:
print "Wow, that is light"
It is so much harder to understand what is going on in the first example. With a namedtuple, each field has a name. And you access it by name rather than position or index. Instead of p[1]
, we can call it p.saturation. It's easier to understand. And it looks cleaner.
Creating an instance of the namedtuple is easier than creating a dictionary.
# dictionary
>>>p = dict(hue = 170, saturation = 0.1, luminosity = 0.6)
>>>p['hue']
170
#nametuple
>>>from collections import namedtuple
>>>Color = namedtuple('Color', ['hue', 'saturation', 'luminosity'])
>>>p = Color(170, 0.1, 0.6)
>>>p.hue
170
p.hue
rather than
p['hue']
.The syntax
collections.namedtuple(typename, field_names[, verbose=False][, rename=False])
['x', 'y', 'z']
or string x y z
(without commas, just
whitespace) or x, y, z
.True
, invalid fieldnames are automatically
replaced with positional names. For example, ['abc', 'def', 'ghi','abc']
is converted to ['abc', '_1', 'ghi', '_3']
, eliminating the
keyword 'def'
(since that is a reserved word for defining functions)
and the duplicate fieldname 'abc'
.True
, the class definition is printed just
before being built.You can still access namedtuples by their position, if you so choose. p[1] == p.saturation
. It still unpacks like a regular tuple.
All the regular tuple methods are supported. Ex: min(), max(), len(), in, not in, concatenation (+), index, slice, etc. And there are a few additional ones for namedtuple. Note: these all start with an underscore. _replace
, _make
, _asdict
.
_replace
Returns a new instance of the named tuple replacing specified fields with new values.
The syntax
somenamedtuple._replace(kwargs)
Example
>>>from collections import namedtuple
>>>Color = namedtuple('Color', ['hue', 'saturation', 'luminosity'])
>>>p = Color(170, 0.1, 0.6)
>>>p._replace(hue=87)
Color(87, 0.1, 0.6)
>>>p._replace(hue=87, saturation=0.2)
Color(87, 0.2, 0.6)
Notice: The field names are not in quotes; they are keywords here.
Remember: Tuples are immutable - even if they are namedtuples and have the _replace
method. The _replace
produces a new
instance; it does not modify the original or replace the old value. You can of course save the new result to the variable. p = p._replace(hue=169)
_make
Makes a new instance from an existing sequence or iterable.
The syntax
somenamedtuple._make(iterable)
Example
>>>data = (170, 0.1, 0.6)
>>>Color._make(data)
Color(hue=170, saturation=0.1, luminosity=0.6)
>>>Color._make([170, 0.1, 0.6]) #the list is an iterable
Color(hue=170, saturation=0.1, luminosity=0.6)
>>>Color._make((170, 0.1, 0.6)) #the tuple is an iterable
Color(hue=170, saturation=0.1, luminosity=0.6)
>>>Color._make(170, 0.1, 0.6)
Traceback (most recent call last):
File "", line 1, in
File "", line 15, in _make
TypeError: 'float' object is not callable
What happened with the last one? The item inside the parenthesis should be the iterable. So a list or tuple inside the parenthesis works, but the sequence of values without enclosing as an iterable returns an error.
_asdict
Returns a new OrderedDict which maps field names to their corresponding values.
The syntax
somenamedtuple._asdict()
Example
>>>p._asdict()
OrderedDict([('hue', 169), ('saturation', 0.1), ('luminosity', 0.6)])
Reference: https://www.reddit.com/r/Python/comments/38ee9d/intro_to_namedtuple/
There is also named list which is similar to named tuple but mutable https://pypi.python.org/pypi/namedlist