I would like to solve the following problem with dplyr. Preferable with one of the window-functions. I have a data frame with houses and buying prices. The following is an e
These all use na.locf
from the zoo package. Also note that na.locf0
(also defined in zoo) is like na.locf
except it defaults to na.rm = FALSE
and requires a single vector argument. na.locf2
defined in the first solution is also used in some of the others.
dplyr
library(dplyr)
library(zoo)
na.locf2 <- function(x) na.locf(x, na.rm = FALSE)
df %>% group_by(houseID) %>% do(na.locf2(.)) %>% ungroup
giving:
Source: local data frame [15 x 3]
Groups: houseID
houseID year price
1 1 1995 NA
2 1 1996 100
3 1 1997 100
4 1 1998 120
5 1 1999 120
6 2 1995 NA
7 2 1996 NA
8 2 1997 NA
9 2 1998 30
10 2 1999 30
11 3 1995 NA
12 3 1996 44
13 3 1997 44
14 3 1998 44
15 3 1999 44
A variation of this is:
df %>% group_by(houseID) %>% mutate(price = na.locf0(price)) %>% ungroup
Other solutions below give output which is quite similar so we won't repeat it except where the format differs substantially.
Another possibility is to combine the by
solution (shown further below) with dplyr:
df %>% by(df$houseID, na.locf2) %>% bind_rows
by
library(zoo)
do.call(rbind, by(df, df$houseID, na.locf2))
ave
library(zoo)
transform(df, price = ave(price, houseID, FUN = na.locf0))
data.table
library(data.table)
library(zoo)
data.table(df)[, na.locf2(.SD), by = houseID]
zoo This solution uses zoo alone. It returns a wide rather than long result:
library(zoo)
z <- read.zoo(df, index = 2, split = 1, FUN = identity)
na.locf2(z)
giving:
1 2 3
1995 NA NA NA
1996 100 NA 44
1997 100 NA 44
1998 120 30 44
1999 120 30 44
This solution could be combined with dplyr like this:
library(dplyr)
library(zoo)
df %>% read.zoo(index = 2, split = 1, FUN = identity) %>% na.locf2
input
Here is the input used for the examples above:
df <- structure(list(houseID = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L), year = c(1995L, 1996L, 1997L, 1998L,
1999L, 1995L, 1996L, 1997L, 1998L, 1999L, 1995L, 1996L, 1997L,
1998L, 1999L), price = c(NA, 100L, NA, 120L, NA, NA, NA, NA,
30L, NA, NA, 44L, NA, NA, NA)), .Names = c("houseID", "year",
"price"), class = "data.frame", row.names = c(NA, -15L))
REVISED Re-arranged and added more solutions. Revised dplyr/zoo solution to conform to latest changes dplyr. Applied fixed and factored out na.locf2
from all solutions.