Just to clarify, this is not a homework problem :)
I wanted to find primes for a math application I am building & came across Sieve of Eratosthenes approach.
not sure if my code is efficeient, anyone care to comment?
from math import isqrt
def isPrime(n):
if n >= 2: # cheating the 2, is 2 even prime?
for i in range(3, int(n / 2 + 1),2): # dont waste time with even numbers
if n % i == 0:
return False
return True
def primesTo(n):
x = [2] if n >= 2 else [] # cheat the only even prime
if n >= 2:
for i in range(3, n + 1,2): # dont waste time with even numbers
if isPrime(i):
x.append(i)
return x
def primes2(n): # trying to do this using set methods and the "Sieve of Eratosthenes"
base = {2} # again cheating the 2
base.update(set(range(3, n + 1, 2))) # build the base of odd numbers
for i in range(3, isqrt(n) + 1, 2): # apply the sieve
base.difference_update(set(range(2 * i, n + 1 , i)))
return list(base)
print(primesTo(10000)) # 2 different methods for comparison
print(primes2(10000))