I\'m designing an algorithm to do the following: Given array A[1... n]
, for every i < j
, find all inversion pairs such that A[i] > A[j]
In Python
# O(n log n)
def count_inversion(lst):
return merge_count_inversion(lst)[1]
def merge_count_inversion(lst):
if len(lst) <= 1:
return lst, 0
middle = int( len(lst) / 2 )
left, a = merge_count_inversion(lst[:middle])
right, b = merge_count_inversion(lst[middle:])
result, c = merge_count_split_inversion(left, right)
return result, (a + b + c)
def merge_count_split_inversion(left, right):
result = []
count = 0
i, j = 0, 0
left_len = len(left)
while i < left_len and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
count += left_len - i
j += 1
result += left[i:]
result += right[j:]
return result, count
#test code
input_array_1 = [] #0
input_array_2 = [1] #0
input_array_3 = [1, 5] #0
input_array_4 = [4, 1] #1
input_array_5 = [4, 1, 2, 3, 9] #3
input_array_6 = [4, 1, 3, 2, 9, 5] #5
input_array_7 = [4, 1, 3, 2, 9, 1] #8
print count_inversion(input_array_1)
print count_inversion(input_array_2)
print count_inversion(input_array_3)
print count_inversion(input_array_4)
print count_inversion(input_array_5)
print count_inversion(input_array_6)
print count_inversion(input_array_7)