There is a big database, 1,000,000,000 rows, called threads (these threads actually exist, I\'m not making things harder just because of I enjoy it). Threads has only a few
You should read the following and learn a little bit about the advantages of a well designed innodb table and how best to use clustered indexes - only available with innodb !
http://dev.mysql.com/doc/refman/5.0/en/innodb-index-types.html
http://www.xaprb.com/blog/2006/07/04/how-to-exploit-mysql-index-optimizations/
then design your system something along the lines of the following simplified example:
The important features are that the tables use the innodb engine and the primary key for the threads table is no longer a single auto_incrementing key but a composite clustered key based on a combination of forum_id and thread_id. e.g.
threads - primary key (forum_id, thread_id)
forum_id thread_id
======== =========
1 1
1 2
1 3
1 ...
1 2058300
2 1
2 2
2 3
2 ...
2 2352141
...
Each forum row includes a counter called next_thread_id (unsigned int) which is maintained by a trigger and increments every time a thread is added to a given forum. This also means we can store 4 billion threads per forum rather than 4 billion threads in total if using a single auto_increment primary key for thread_id.
forum_id title next_thread_id
======== ===== ==============
1 forum 1 2058300
2 forum 2 2352141
3 forum 3 2482805
4 forum 4 3740957
...
64 forum 64 3243097
65 forum 65 15000000 -- ooh a big one
66 forum 66 5038900
67 forum 67 4449764
...
247 forum 247 0 -- still loading data for half the forums !
248 forum 248 0
249 forum 249 0
250 forum 250 0
The disadvantage of using a composite key is that you can no longer just select a thread by a single key value as follows:
select * from threads where thread_id = y;
you have to do:
select * from threads where forum_id = x and thread_id = y;
However, your application code should be aware of which forum a user is browsing so it's not exactly difficult to implement - store the currently viewed forum_id in a session variable or hidden form field etc...
Here's the simplified schema:
drop table if exists forums;
create table forums
(
forum_id smallint unsigned not null auto_increment primary key,
title varchar(255) unique not null,
next_thread_id int unsigned not null default 0 -- count of threads in each forum
)engine=innodb;
drop table if exists threads;
create table threads
(
forum_id smallint unsigned not null,
thread_id int unsigned not null default 0,
reply_count int unsigned not null default 0,
hash char(32) not null,
created_date datetime not null,
primary key (forum_id, thread_id, reply_count) -- composite clustered index
)engine=innodb;
delimiter #
create trigger threads_before_ins_trig before insert on threads
for each row
begin
declare v_id int unsigned default 0;
select next_thread_id + 1 into v_id from forums where forum_id = new.forum_id;
set new.thread_id = v_id;
update forums set next_thread_id = v_id where forum_id = new.forum_id;
end#
delimiter ;
You may have noticed I've included reply_count as part of the primary key which is a bit strange as (forum_id, thread_id) composite is unique in itself. This is just an index optimisation which saves some I/O when queries that use reply_count are executed. Please refer to the 2 links above for further info on this.
I'm still loading data into my example tables and so far I have a loaded approx. 500 million rows (half as many as your system). When the load process is complete I should expect to have approx:
250 forums * 5 million threads = 1250 000 000 (1.2 billion rows)
I've deliberately made some of the forums contain more than 5 million threads for example, forum 65 has 15 million threads:
forum_id title next_thread_id
======== ===== ==============
65 forum 65 15000000 -- ooh a big one
select sum(next_thread_id) from forums;
sum(next_thread_id)
===================
539,155,433 (500 million threads so far and still growing...)
under innodb summing the next_thread_ids to give a total thread count is much faster than the usual:
select count(*) from threads;
How many threads does forum 65 have:
select next_thread_id from forums where forum_id = 65
next_thread_id
==============
15,000,000 (15 million)
again this is faster than the usual:
select count(*) from threads where forum_id = 65
Ok now we know we have about 500 million threads so far and forum 65 has 15 million threads - let's see how the schema performs :)
select forum_id, thread_id from threads where forum_id = 65 and reply_count > 64 order by thread_id desc limit 32;
runtime = 0.022 secs
select forum_id, thread_id from threads where forum_id = 65 and reply_count > 1 order by thread_id desc limit 10000, 100;
runtime = 0.027 secs
Looks pretty performant to me - so that's a single table with 500+ million rows (and growing) with a query that covers 15 million rows in 0.02 seconds (while under load !)
These would include:
partitioning by range
sharding
throwing money and hardware at it
etc...
hope you find this answer helpful :)