In C#, the result of Math.Round(2.5)
is 2.
It is supposed to be 3, isn\'t it? Why is it 2 instead in C#?
That's called rounding to even (or banker's rounding), which is a valid rounding strategy for minimizing accrued errors in sums (MidpointRounding.ToEven)
. The theory is that, if you always round a 0.5 number in the same direction, the errors will accrue faster (round-to-even is supposed to minimize that) (a).
Follow these links for the MSDN descriptions of:
Round(2.5,MidpointRounding.ToEven)
" becoming 2) or so that it's further away from zero ("Round(2.5,MidpointRounding.AwayFromZero)
" becoming 3).The following diagram and table may help:
-3 -2 -1 0 1 2 3
+--|------+---------+----|----+--|------+----|----+-------|-+
a b c d e
a=-2.7 b=-0.5 c=0.3 d=1.5 e=2.8
====== ====== ===== ===== =====
Floor -3 -1 0 1 2
Ceiling -2 0 1 2 3
Truncate -2 0 0 1 2
Round(ToEven) -3 0 0 2 3
Round(AwayFromZero) -3 -1 0 2 3
Note that Round
is a lot more powerful than it seems, simply because it can round to a specific number of decimal places. All the others round to zero decimals always. For example:
n = 3.145;
a = System.Math.Round (n, 2, MidpointRounding.ToEven); // 3.14
b = System.Math.Round (n, 2, MidpointRounding.AwayFromZero); // 3.15
With the other functions, you have to use multiply/divide trickery to achieve the same effect:
c = System.Math.Truncate (n * 100) / 100; // 3.14
d = System.Math.Ceiling (n * 100) / 100; // 3.15
(a) Of course, that theory depends on the fact that your data has an fairly even spread of values across the even halves (0.5, 2.5, 4.5, ...) and odd halves (1.5, 3.5, ...).
If all the "half-values" are evens (for example), the errors will accumulate just as fast as if you always rounded up.