If I have some integer n, and I want to know the position of the most significant bit (that is, if the least significant bit is on the right, I want to know the position of
Note that what you are trying to do is calculate the integer log2 of an integer,
#include
#include
unsigned int
Log2(unsigned long x)
{
unsigned long n = x;
int bits = sizeof(x)*8;
int step = 1; int k=0;
for( step = 1; step < bits; ) {
n |= (n >> step);
step *= 2; ++k;
}
//printf("%ld %ld\n",x, (x - (n >> 1)) );
return(x - (n >> 1));
}
Observe that you can attempt to search more than 1 bit at a time.
unsigned int
Log2_a(unsigned long x)
{
unsigned long n = x;
int bits = sizeof(x)*8;
int step = 1;
int step2 = 0;
//observe that you can move 8 bits at a time, and there is a pattern...
//if( x>1<1<1<1L<1L<<(step+step2); ) {
step+=1;
//printf("step %d\n",step+step2);
}
printf("log2(%ld) %d\n",x,step+step2);
return(step+step2);
}
This approach uses a binary search
unsigned int
Log2_b(unsigned long x)
{
unsigned long n = x;
unsigned int bits = sizeof(x)*8;
unsigned int hbit = bits-1;
unsigned int lbit = 0;
unsigned long guess = bits/2;
int found = 0;
while ( hbit-lbit>1 ) {
//printf("log2(%ld) %d<%d<%d\n",x,lbit,guess,hbit);
//when value between guess..lbit
if( (x<=(1L<(1L< 1<<%d %ld\n",x,guess,1L<(1L<
Another binary search method, perhaps more readable,
unsigned int
Log2_c(unsigned long x)
{
unsigned long v = x;
unsigned int bits = sizeof(x)*8;
unsigned int step = bits;
unsigned int res = 0;
for( step = bits/2; step>0; )
{
//printf("log2(%ld) v %d >> step %d = %ld\n",x,v,step,v>>step);
while ( v>>step ) {
v>>=step;
res+=step;
//printf("log2(%ld) step %d res %d v>>step %ld\n",x,step,res,v);
}
step /= 2;
}
if( (x>(1L<
And because you will want to test these,
int main()
{
unsigned long int x = 3;
for( x=2; x<1000000000; x*=2 ) {
//printf("x %ld, x+1 %ld, log2(x+1) %d\n",x,x+1,Log2(x+1));
printf("x %ld, x+1 %ld, log2_a(x+1) %d\n",x,x+1,Log2_a(x+1));
printf("x %ld, x+1 %ld, log2_b(x+1) %d\n",x,x+1,Log2_b(x+1));
printf("x %ld, x+1 %ld, log2_c(x+1) %d\n",x,x+1,Log2_c(x+1));
}
return(0);
}