here is a neat and clean code to understand AES 256 algorithm implemented in C#
call Encrypt function as encryptedstring = cryptObj.Encrypt(username, "AGARAMUDHALA", "EZHUTHELLAM", "SHA1", 3, "@1B2c3D4e5F6g7H8", 256);
public class Crypt
{
public string Encrypt(string passtext, string passPhrase, string saltV, string hashstring, int Iterations, string initVect, int keysize)
{
string functionReturnValue = null;
// Convert strings into byte arrays.
// Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte[] initVectorBytes = null;
initVectorBytes = Encoding.ASCII.GetBytes(initVect);
byte[] saltValueBytes = null;
saltValueBytes = Encoding.ASCII.GetBytes(saltV);
// Convert our plaintext into a byte array.
// Let us assume that plaintext contains UTF8-encoded characters.
byte[] plainTextBytes = null;
plainTextBytes = Encoding.UTF8.GetBytes(passtext);
// First, we must create a password, from which the key will be derived.
// This password will be generated from the specified passphrase and
// salt value. The password will be created using the specified hash
// algorithm. Password creation can be done in several iterations.
PasswordDeriveBytes password = default(PasswordDeriveBytes);
password = new PasswordDeriveBytes(passPhrase, saltValueBytes, hashstring, Iterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte[] keyBytes = null;
keyBytes = password.GetBytes(keysize/8);
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = default(RijndaelManaged);
symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate encryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform encryptor = default(ICryptoTransform);
encryptor = symmetricKey.CreateEncryptor(keyBytes, initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = default(MemoryStream);
memoryStream = new MemoryStream();
// Define cryptographic stream (always use Write mode for encryption).
CryptoStream cryptoStream = default(CryptoStream);
cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write);
// Start encrypting.
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
// Finish encrypting.
cryptoStream.FlushFinalBlock();
// Convert our encrypted data from a memory stream into a byte array.
byte[] cipherTextBytes = null;
cipherTextBytes = memoryStream.ToArray();
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Convert encrypted data into a base64-encoded string.
string cipherText = null;
cipherText = Convert.ToBase64String(cipherTextBytes);
functionReturnValue = cipherText;
return functionReturnValue;
}
public string Decrypt(string cipherText, string passPhrase, string saltValue, string hashAlgorithm, int passwordIterations, string initVector, int keySize)
{
string functionReturnValue = null;
// Convert strings defining encryption key characteristics into byte
// arrays. Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte[] initVectorBytes = null;
initVectorBytes = Encoding.ASCII.GetBytes(initVector);
byte[] saltValueBytes = null;
saltValueBytes = Encoding.ASCII.GetBytes(saltValue);
// Convert our ciphertext into a byte array.
byte[] cipherTextBytes = null;
cipherTextBytes = Convert.FromBase64String(cipherText);
// First, we must create a password, from which the key will be
// derived. This password will be generated from the specified
// passphrase and salt value. The password will be created using
// the specified hash algorithm. Password creation can be done in
// several iterations.
PasswordDeriveBytes password = default(PasswordDeriveBytes);
password = new PasswordDeriveBytes(passPhrase, saltValueBytes, hashAlgorithm, passwordIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte[] keyBytes = null;
keyBytes = password.GetBytes(keySize / 8);
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = default(RijndaelManaged);
symmetricKey = new RijndaelManaged();
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;
// Generate decryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform decryptor = default(ICryptoTransform);
decryptor = symmetricKey.CreateDecryptor(keyBytes, initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = default(MemoryStream);
memoryStream = new MemoryStream(cipherTextBytes);
// Define memory stream which will be used to hold encrypted data.
CryptoStream cryptoStream = default(CryptoStream);
cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);
// Since at this point we don't know what the size of decrypted data
// will be, allocate the buffer long enough to hold ciphertext;
// plaintext is never longer than ciphertext.
byte[] plainTextBytes = null;
plainTextBytes = new byte[cipherTextBytes.Length + 1];
// Start decrypting.
int decryptedByteCount = 0;
decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
// Close both streams.
memoryStream.Close();
cryptoStream.Close();
// Convert decrypted data into a string.
// Let us assume that the original plaintext string was UTF8-encoded.
string plainText = null;
plainText = Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
// Return decrypted string.
functionReturnValue = plainText;
return functionReturnValue;
}
}