I have heard that C++ class member function templates can\'t be virtual. Is this true?
If they can be virtual, what is an example of a scenario in which one would
Let's begin with some background on virtual function tables and how they work (source):
[20.3] What's the difference between how virtual and non-virtual member functions are called?
Non-virtual member functions are resolved statically. That is, the member function is selected statically (at compile-time) based on the type of the pointer (or reference) to the object.
In contrast, virtual member functions are resolved dynamically (at run-time). That is, the member function is selected dynamically (at run-time) based on the type of the object, not the type of the pointer/reference to that object. This is called "dynamic binding." Most compilers use some variant of the following technique: if the object has one or more virtual functions, the compiler puts a hidden pointer in the object called a "virtual-pointer" or "v-pointer." This v-pointer points to a global table called the "virtual-table" or "v-table."
The compiler creates a v-table for each class that has at least one virtual function. For example, if class Circle has virtual functions for draw() and move() and resize(), there would be exactly one v-table associated with class Circle, even if there were a gazillion Circle objects, and the v-pointer of each of those Circle objects would point to the Circle v-table. The v-table itself has pointers to each of the virtual functions in the class. For example, the Circle v-table would have three pointers: a pointer to Circle::draw(), a pointer to Circle::move(), and a pointer to Circle::resize().
During a dispatch of a virtual function, the run-time system follows the object's v-pointer to the class's v-table, then follows the appropriate slot in the v-table to the method code.
The space-cost overhead of the above technique is nominal: an extra pointer per object (but only for objects that will need to do dynamic binding), plus an extra pointer per method (but only for virtual methods). The time-cost overhead is also fairly nominal: compared to a normal function call, a virtual function call requires two extra fetches (one to get the value of the v-pointer, a second to get the address of the method). None of this runtime activity happens with non-virtual functions, since the compiler resolves non-virtual functions exclusively at compile-time based on the type of the pointer.
I'm attempting to use something like this now for a cubefile base class with templated optimized load functions which will be implemented differently for different types of cubes (some stored by pixel, some by image, etc).
Some code:
virtual void LoadCube(UtpBipCube &Cube,long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
What I'd like it to be, but it won't compile due to a virtual templated combo:
template
virtual void LoadCube(UtpBipCube &Cube,long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
I ended up moving the template declaration to the class level. This solution would have forced programs to know about specific types of data they would read before they read them, which is unacceptable.
warning, this isn't very pretty but it allowed me to remove repetitive execution code
1) in the base class
virtual void LoadCube(UtpBipCube &Cube,long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
virtual void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1) = 0;
2) and in the child classes
void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1)
{ LoadAnyCube(Cube,LowerLeftRow,LowerLeftColumn,UpperRightRow,UpperRightColumn,LowerBand,UpperBand); }
void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1)
{ LoadAnyCube(Cube,LowerLeftRow,LowerLeftColumn,UpperRightRow,UpperRightColumn,LowerBand,UpperBand); }
void LoadCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1)
{ LoadAnyCube(Cube,LowerLeftRow,LowerLeftColumn,UpperRightRow,UpperRightColumn,LowerBand,UpperBand); }
template
void LoadAnyCube(UtpBipCube &Cube, long LowerLeftRow=0,long LowerLeftColumn=0,
long UpperRightRow=-1,long UpperRightColumn=-1,long LowerBand=0,long UpperBand=-1);
Note that LoadAnyCube is not declared in the base class.
Here's another stack overflow answer with a work around: need a virtual template member workaround.