I have done some web based projects, but I don\'t think too much about the load and execution sequence of an ordinary web page. But now I need to know detail. It\'s hard to
1) HTML is downloaded.
2) HTML is parsed progressively. When a request for an asset is reached the browser will attempt to download the asset. A default configuration for most HTTP servers and most browsers is to process only two requests in parallel. IE can be reconfigured to downloaded an unlimited number of assets in parallel. Steve Souders has been able to download over 100 requests in parallel on IE. The exception is that script requests block parallel asset requests in IE. This is why it is highly suggested to put all JavaScript in external JavaScript files and put the request just prior to the closing body tag in the HTML.
3) Once the HTML is parsed the DOM is rendered. CSS is rendered in parallel to the rendering of the DOM in nearly all user agents. As a result it is strongly recommended to put all CSS code into external CSS files that are requested as high as possible in the
section of the document. Otherwise the page is rendered up to the occurance of the CSS request position in the DOM and then rendering starts over from the top.4) Only after the DOM is completely rendered and requests for all assets in the page are either resolved or time out does JavaScript execute from the onload event. IE7, and I am not sure about IE8, does not time out assets quickly if an HTTP response is not received from the asset request. This means an asset requested by JavaScript inline to the page, that is JavaScript written into HTML tags that is not contained in a function, can prevent the execution of the onload event for hours. This problem can be triggered if such inline code exists in the page and fails to execute due to a namespace collision that causes a code crash.
Of the above steps the one that is most CPU intensive is the parsing of the DOM/CSS. If you want your page to be processed faster then write efficient CSS by eliminating redundent instructions and consolidating CSS instructions into the fewest possible element referrences. Reducing the number of nodes in your DOM tree will also produce faster rendering.
Keep in mind that each asset you request from your HTML or even from your CSS/JavaScript assets is requested with a separate HTTP header. This consumes bandwidth and requires processing per request. If you want to make your page load as fast as possible then reduce the number of HTTP requests and reduce the size of your HTML. You are not doing your user experience any favors by averaging page weight at 180k from HTML alone. Many developers subscribe to some fallacy that a user makes up their mind about the quality of content on the page in 6 nanoseconds and then purges the DNS query from his server and burns his computer if displeased, so instead they provide the most beautiful possible page at 250k of HTML. Keep your HTML short and sweet so that a user can load your pages faster. Nothing improves the user experience like a fast and responsive web page.