Why is the use of alloca() not considered good practice?

前端 未结 22 2352
甜味超标
甜味超标 2020-11-22 03:00

alloca() allocates memory on the stack rather than on the heap, as in the case of malloc(). So, when I return from the routine the memory is freed.

22条回答
  •  南笙
    南笙 (楼主)
    2020-11-22 03:44

    still alloca use is discouraged, why?

    I don't perceive such a consensus. Lots of strong pros; a few cons:

    • C99 provides variable length arrays, which would often be used preferentially as the notation's more consistent with fixed-length arrays and intuitive overall
    • many systems have less overall memory/address-space available for the stack than they do for the heap, which makes the program slightly more susceptible to memory exhaustion (through stack overflow): this may be seen as a good or a bad thing - one of the reasons the stack doesn't automatically grow the way heap does is to prevent out-of-control programs from having as much adverse impact on the entire machine
    • when used in a more local scope (such as a while or for loop) or in several scopes, the memory accumulates per iteration/scope and is not released until the function exits: this contrasts with normal variables defined in the scope of a control structure (e.g. for {int i = 0; i < 2; ++i) { X } would accumulate alloca-ed memory requested at X, but memory for a fixed-sized array would be recycled per iteration).
    • modern compilers typically do not inline functions that call alloca, but if you force them then the alloca will happen in the callers' context (i.e. the stack won't be released until the caller returns)
    • a long time ago alloca transitioned from a non-portable feature/hack to a Standardised extension, but some negative perception may persist
    • the lifetime is bound to the function scope, which may or may not suit the programmer better than malloc's explicit control
    • having to use malloc encourages thinking about the deallocation - if that's managed through a wrapper function (e.g. WonderfulObject_DestructorFree(ptr)), then the function provides a point for implementation clean up operations (like closing file descriptors, freeing internal pointers or doing some logging) without explicit changes to client code: sometimes it's a nice model to adopt consistently
      • in this pseudo-OO style of programming, it's natural to want something like WonderfulObject* p = WonderfulObject_AllocConstructor(); - that's possible when the "constructor" is a function returning malloc-ed memory (as the memory remains allocated after the function returns the value to be stored in p), but not if the "constructor" uses alloca
        • a macro version of WonderfulObject_AllocConstructor could achieve this, but "macros are evil" in that they can conflict with each other and non-macro code and create unintended substitutions and consequent difficult-to-diagnose problems
      • missing free operations can be detected by ValGrind, Purify etc. but missing "destructor" calls can't always be detected at all - one very tenuous benefit in terms of enforcement of intended usage; some alloca() implementations (such as GCC's) use an inlined macro for alloca(), so runtime substitution of a memory-usage diagnostic library isn't possible the way it is for malloc/realloc/free (e.g. electric fence)
    • some implementations have subtle issues: for example, from the Linux manpage:

      On many systems alloca() cannot be used inside the list of arguments of a function call, because the stack space reserved by alloca() would appear on the stack in the middle of the space for the function arguments.


    I know this question is tagged C, but as a C++ programmer I thought I'd use C++ to illustrate the potential utility of alloca: the code below (and here at ideone) creates a vector tracking differently sized polymorphic types that are stack allocated (with lifetime tied to function return) rather than heap allocated.

    #include 
    #include 
    #include 
    
    struct Base
    {
        virtual ~Base() { }
        virtual int to_int() const = 0;
    };
    
    struct Integer : Base
    {
        Integer(int n) : n_(n) { }
        int to_int() const { return n_; }
        int n_;
    };
    
    struct Double : Base
    {
        Double(double n) : n_(n) { }
        int to_int() const { return -n_; }
        double n_;
    };
    
    inline Base* factory(double d) __attribute__((always_inline));
    
    inline Base* factory(double d)
    {
        if ((double)(int)d != d)
            return new (alloca(sizeof(Double))) Double(d);
        else
            return new (alloca(sizeof(Integer))) Integer(d);
    }
    
    int main()
    {
        std::vector numbers;
        numbers.push_back(factory(29.3));
        numbers.push_back(factory(29));
        numbers.push_back(factory(7.1));
        numbers.push_back(factory(2));
        numbers.push_back(factory(231.0));
        for (std::vector::const_iterator i = numbers.begin();
             i != numbers.end(); ++i)
        {
            std::cout << *i << ' ' << (*i)->to_int() << '\n';
            (*i)->~Base();   // optionally / else Undefined Behaviour iff the
                             // program depends on side effects of destructor
        }
    }
    

提交回复
热议问题