I\'m asking for a template trick to detect if a class has a specific member function of a given signature.
The problem is similar to the one cited here http://www.go
Came with the same kind of problem myself, and found the proposed solutions in here very interesting... but had the requirement for a solution that:
Found another thread proposing something like this, based on a BOOST discussion. Here is the generalisation of the proposed solution as two macros declaration for traits class, following the model of boost::has_* classes.
#include
#include
/// Has constant function
/** \param func_ret_type Function return type
\param func_name Function name
\param ... Variadic arguments are for the function parameters
*/
#define DECLARE_TRAITS_HAS_FUNC_C(func_ret_type, func_name, ...) \
__DECLARE_TRAITS_HAS_FUNC(1, func_ret_type, func_name, ##__VA_ARGS__)
/// Has non-const function
/** \param func_ret_type Function return type
\param func_name Function name
\param ... Variadic arguments are for the function parameters
*/
#define DECLARE_TRAITS_HAS_FUNC(func_ret_type, func_name, ...) \
__DECLARE_TRAITS_HAS_FUNC(0, func_ret_type, func_name, ##__VA_ARGS__)
// Traits content
#define __DECLARE_TRAITS_HAS_FUNC(func_const, func_ret_type, func_name, ...) \
template \
< typename Type, \
bool is_class = boost::is_class::value \
> \
class has_func_ ## func_name; \
template \
class has_func_ ## func_name \
{public: \
BOOST_STATIC_CONSTANT( bool, value = false ); \
typedef boost::false_type type; \
}; \
template \
class has_func_ ## func_name \
{ struct yes { char _foo; }; \
struct no { yes _foo[2]; }; \
struct Fallback \
{ func_ret_type func_name( __VA_ARGS__ ) \
UTILITY_OPTIONAL(func_const,const) {} \
}; \
struct Derived : public Type, public Fallback {}; \
template class Helper{}; \
template \
static no deduce(U*, Helper \
< func_ret_type (Fallback::*)( __VA_ARGS__ ) \
UTILITY_OPTIONAL(func_const,const), \
&U::func_name \
>* = 0 \
); \
static yes deduce(...); \
public: \
BOOST_STATIC_CONSTANT( \
bool, \
value = sizeof(yes) \
== sizeof( deduce( static_cast(0) ) ) \
); \
typedef ::boost::integral_constant type; \
BOOST_STATIC_CONSTANT(bool, is_const = func_const); \
typedef func_ret_type return_type; \
typedef ::boost::mpl::vector< __VA_ARGS__ > args_type; \
}
// Utility functions
#define UTILITY_OPTIONAL(condition, ...) UTILITY_INDIRECT_CALL( __UTILITY_OPTIONAL_ ## condition , ##__VA_ARGS__ )
#define UTILITY_INDIRECT_CALL(macro, ...) macro ( __VA_ARGS__ )
#define __UTILITY_OPTIONAL_0(...)
#define __UTILITY_OPTIONAL_1(...) __VA_ARGS__
These macros expand to a traits class with the following prototype:
template
class has_func_[func_name]
{
public:
/// Function definition result value
/** Tells if the tested function is defined for type T or not.
*/
static const bool value = true | false;
/// Function definition result type
/** Type representing the value attribute usable in
http://www.boost.org/doc/libs/1_53_0/libs/utility/enable_if.html
*/
typedef boost::integral_constant type;
/// Tested function constness indicator
/** Indicates if the tested function is const or not.
This value is not deduced, it is forced depending
on the user call to one of the traits generators.
*/
static const bool is_const = true | false;
/// Tested function return type
/** Indicates the return type of the tested function.
This value is not deduced, it is forced depending
on the user's arguments to the traits generators.
*/
typedef func_ret_type return_type;
/// Tested function arguments types
/** Indicates the arguments types of the tested function.
This value is not deduced, it is forced depending
on the user's arguments to the traits generators.
*/
typedef ::boost::mpl::vector< __VA_ARGS__ > args_type;
};
So what is the typical usage one can do out of this?
// We enclose the traits class into
// a namespace to avoid collisions
namespace ns_0 {
// Next line will declare the traits class
// to detect the member function void foo(int,int) const
DECLARE_TRAITS_HAS_FUNC_C(void, foo, int, int);
}
// we can use BOOST to help in using the traits
#include
// Here is a function that is active for types
// declaring the good member function
template inline
typename boost::enable_if< ns_0::has_func_foo >::type
foo_bar(const T &_this_, int a=0, int b=1)
{ _this_.foo(a,b);
}
// Here is a function that is active for types
// NOT declaring the good member function
template inline
typename boost::disable_if< ns_0::has_func_foo >::type
foo_bar(const T &_this_, int a=0, int b=1)
{ default_foo(_this_,a,b);
}
// Let us declare test types
struct empty
{
};
struct direct_foo
{
void foo(int,int);
};
struct direct_const_foo
{
void foo(int,int) const;
};
struct inherited_const_foo :
public direct_const_foo
{
};
// Now anywhere in your code you can seamlessly use
// the foo_bar function on any object:
void test()
{
int a;
foo_bar(a); // calls default_foo
empty b;
foo_bar(b); // calls default_foo
direct_foo c;
foo_bar(c); // calls default_foo (member function is not const)
direct_const_foo d;
foo_bar(d); // calls d.foo (member function is const)
inherited_const_foo e;
foo_bar(e); // calls e.foo (inherited member function)
}