Pandas - How to flatten a hierarchical index in columns

后端 未结 17 1080
忘掉有多难
忘掉有多难 2020-11-22 02:55

I have a data frame with a hierarchical index in axis 1 (columns) (from a groupby.agg operation):

     USAF   WBAN  year  month  day  s_PC  s_CL         


        
17条回答
  •  [愿得一人]
    2020-11-22 03:11

    All of the current answers on this thread must have been a bit dated. As of pandas version 0.24.0, the .to_flat_index() does what you need.

    From panda's own documentation:

    MultiIndex.to_flat_index()

    Convert a MultiIndex to an Index of Tuples containing the level values.

    A simple example from its documentation:

    import pandas as pd
    print(pd.__version__) # '0.23.4'
    index = pd.MultiIndex.from_product(
            [['foo', 'bar'], ['baz', 'qux']],
            names=['a', 'b'])
    
    print(index)
    # MultiIndex(levels=[['bar', 'foo'], ['baz', 'qux']],
    #           codes=[[1, 1, 0, 0], [0, 1, 0, 1]],
    #           names=['a', 'b'])
    

    Applying to_flat_index():

    index.to_flat_index()
    # Index([('foo', 'baz'), ('foo', 'qux'), ('bar', 'baz'), ('bar', 'qux')], dtype='object')
    

    Using it to replace existing pandas column

    An example of how you'd use it on dat, which is a DataFrame with a MultiIndex column:

    dat = df.loc[:,['name','workshop_period','class_size']].groupby(['name','workshop_period']).describe()
    print(dat.columns)
    # MultiIndex(levels=[['class_size'], ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']],
    #            codes=[[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5, 6, 7]])
    
    dat.columns = dat.columns.to_flat_index()
    print(dat.columns)
    # Index([('class_size', 'count'),  ('class_size', 'mean'),
    #     ('class_size', 'std'),   ('class_size', 'min'),
    #     ('class_size', '25%'),   ('class_size', '50%'),
    #     ('class_size', '75%'),   ('class_size', 'max')],
    #  dtype='object')
    

提交回复
热议问题