I know the question is not too specific.
All I want is someone to tell me how to convert a normal merge sort into an in-place merge sort (or a merge sort with const
Including its "big result", this paper describes a couple of variants of in-place merge sort (PDF):
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5514&rep=rep1&type=pdf
In-place sorting with fewer moves
Jyrki Katajainen, Tomi A. Pasanen
It is shown that an array of n elements can be sorted using O(1) extra space, O(n log n / log log n) element moves, and n log2n + O(n log log n) comparisons. This is the first in-place sorting algorithm requiring o(n log n) moves in the worst case while guaranteeing O(n log n) comparisons, but due to the constant factors involved the algorithm is predominantly of theoretical interest.
I think this is relevant too. I have a printout of it lying around, passed on to me by a colleague, but I haven't read it. It seems to cover basic theory, but I'm not familiar enough with the topic to judge how comprehensively:
http://comjnl.oxfordjournals.org/cgi/content/abstract/38/8/681
Optimal Stable Merging
Antonios Symvonis
This paper shows how to stably merge two sequences A and B of sizes m and n, m ≤ n, respectively, with O(m+n) assignments, O(mlog(n/m+1)) comparisons and using only a constant amount of additional space. This result matches all known lower bounds...