It\'s very annoying to have this limitation on my development box, when there won\'t ever be any users other than me.
I\'m aware of the standard workarounds, but non
TLDR: For "the answer" (as I see it), jump down to the >>TLDR<< part in this answer.
OK, I've figured it out (for real this time), the answer to this question, and this answer of mine is also a way of apologizing for promoting another answer (both here and on twitter) that I thought was "the best", but after trying it, discovered that I was mistaken about that. Learn from my mistake kids: don't promote something until you've actually tried it yourself!
Again, I reviewed all the answers here. I've tried some of them (and chose not to try others because I simply didn't like the solutions). I thought that the solution was to use systemd
with its Capabilities=
and CapabilitiesBindingSet=
settings. After wrestling with this for some time, I discovered that this is not the solution because:
Capabilities are intended to restrict root processes!
As the OP wisely stated, it is always best to avoid that (for all your daemons if possible!).
You cannot use the Capabilities related options with User=
and Group=
in systemd
unit files, because capabilities are ALWAYS reset when execev
(or whatever the function is) is called. In other words, when systemd
forks and drops its perms, the capabilities are reset. There is no way around this, and all that binding logic in the kernel is basic around uid=0, not capabilities. This means that it is unlikely that Capabilities will ever be the right answer to this question (at least any time soon). Incidentally, setcap
, as others have mentioned, is not a solution. It didn't work for me, it doesn't work nicely with scripts, and those are reset anyways whenever the file changes.
In my meager defense, I did state (in the comment I've now deleted), that James' iptables suggestion (which the OP also mentions), was the "2nd best solution". :-P
>>TLDR<<
The solution is to combine systemd
with on-the-fly iptables
commands, like this (taken from DNSChain):
[Unit]
Description=dnschain
After=network.target
Wants=namecoin.service
[Service]
ExecStart=/usr/local/bin/dnschain
Environment=DNSCHAIN_SYSD_VER=0.0.1
PermissionsStartOnly=true
ExecStartPre=/sbin/sysctl -w net.ipv4.ip_forward=1
ExecStartPre=-/sbin/iptables -D INPUT -p udp --dport 5333 -j ACCEPT
ExecStartPre=-/sbin/iptables -t nat -D PREROUTING -p udp --dport 53 -j REDIRECT --to-ports 5333
ExecStartPre=/sbin/iptables -A INPUT -p udp --dport 5333 -j ACCEPT
ExecStartPre=/sbin/iptables -t nat -A PREROUTING -p udp --dport 53 -j REDIRECT --to-ports 5333
ExecStopPost=/sbin/iptables -D INPUT -p udp --dport 5333 -j ACCEPT
ExecStopPost=/sbin/iptables -t nat -D PREROUTING -p udp --dport 53 -j REDIRECT --to-ports 5333
User=dns
Group=dns
Restart=always
RestartSec=5
WorkingDirectory=/home/dns
PrivateTmp=true
NoNewPrivileges=true
ReadOnlyDirectories=/etc
# Unfortunately, capabilities are basically worthless because they're designed to restrict root daemons. Instead, we use iptables to listen on privileged ports.
# Capabilities=cap_net_bind_service+pei
# SecureBits=keep-caps
[Install]
WantedBy=multi-user.target
Here we accomplish the following:
iptables
systemd
cleans up the firewall rules for us, making sure to remove them when the daemon isn't running.systemd
claims to), supposedly even if the daemon is compromised and sets uid=0
.iptables
is still, unfortunately, quite an ugly and difficult-to-use utility. If the daemon is listening on eth0:0
instead of eth0
, for example, the commands are slightly different.