How to sort a dataFrame in python pandas by two or more columns?

后端 未结 3 1948
青春惊慌失措
青春惊慌失措 2020-11-22 01:56

Suppose I have a dataframe with columns a, b and c, I want to sort the dataframe by column b in ascending order, and by c

3条回答
  •  花落未央
    2020-11-22 02:28

    For large dataframes of numeric data, you may see a significant performance improvement via numpy.lexsort, which performs an indirect sort using a sequence of keys:

    import pandas as pd
    import numpy as np
    
    np.random.seed(0)
    
    df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
    df1 = pd.concat([df1]*100000)
    
    def pdsort(df1):
        return df1.sort_values(['a', 'b'], ascending=[True, False])
    
    def lex(df1):
        arr = df1.values
        return pd.DataFrame(arr[np.lexsort((-arr[:, 1], arr[:, 0]))])
    
    assert (pdsort(df1).values == lex(df1).values).all()
    
    %timeit pdsort(df1)  # 193 ms per loop
    %timeit lex(df1)     # 143 ms per loop
    

    One peculiarity is that the defined sorting order with numpy.lexsort is reversed: (-'b', 'a') sorts by series a first. We negate series b to reflect we want this series in descending order.

    Be aware that np.lexsort only sorts with numeric values, while pd.DataFrame.sort_values works with either string or numeric values. Using np.lexsort with strings will give: TypeError: bad operand type for unary -: 'str'.

提交回复
热议问题