Adding new column to existing DataFrame in Python pandas

后端 未结 25 1278
你的背包
你的背包 2020-11-22 01:15

I have the following indexed DataFrame with named columns and rows not- continuous numbers:

          a         b         c         d
2  0.671399  0.101208 -         


        
25条回答
  •  伪装坚强ぢ
    2020-11-22 01:41

    Foolproof:

    df.loc[:, 'NewCol'] = 'New_Val'
    

    Example:

    df = pd.DataFrame(data=np.random.randn(20, 4), columns=['A', 'B', 'C', 'D'])
    
    df
    
               A         B         C         D
    0  -0.761269  0.477348  1.170614  0.752714
    1   1.217250 -0.930860 -0.769324 -0.408642
    2  -0.619679 -1.227659 -0.259135  1.700294
    3  -0.147354  0.778707  0.479145  2.284143
    4  -0.529529  0.000571  0.913779  1.395894
    5   2.592400  0.637253  1.441096 -0.631468
    6   0.757178  0.240012 -0.553820  1.177202
    7  -0.986128 -1.313843  0.788589 -0.707836
    8   0.606985 -2.232903 -1.358107 -2.855494
    9  -0.692013  0.671866  1.179466 -1.180351
    10 -1.093707 -0.530600  0.182926 -1.296494
    11 -0.143273 -0.503199 -1.328728  0.610552
    12 -0.923110 -1.365890 -1.366202 -1.185999
    13 -2.026832  0.273593 -0.440426 -0.627423
    14 -0.054503 -0.788866 -0.228088 -0.404783
    15  0.955298 -1.430019  1.434071 -0.088215
    16 -0.227946  0.047462  0.373573 -0.111675
    17  1.627912  0.043611  1.743403 -0.012714
    18  0.693458  0.144327  0.329500 -0.655045
    19  0.104425  0.037412  0.450598 -0.923387
    
    
    df.drop([3, 5, 8, 10, 18], inplace=True)
    
    df
    
               A         B         C         D
    0  -0.761269  0.477348  1.170614  0.752714
    1   1.217250 -0.930860 -0.769324 -0.408642
    2  -0.619679 -1.227659 -0.259135  1.700294
    4  -0.529529  0.000571  0.913779  1.395894
    6   0.757178  0.240012 -0.553820  1.177202
    7  -0.986128 -1.313843  0.788589 -0.707836
    9  -0.692013  0.671866  1.179466 -1.180351
    11 -0.143273 -0.503199 -1.328728  0.610552
    12 -0.923110 -1.365890 -1.366202 -1.185999
    13 -2.026832  0.273593 -0.440426 -0.627423
    14 -0.054503 -0.788866 -0.228088 -0.404783
    15  0.955298 -1.430019  1.434071 -0.088215
    16 -0.227946  0.047462  0.373573 -0.111675
    17  1.627912  0.043611  1.743403 -0.012714
    19  0.104425  0.037412  0.450598 -0.923387
    
    df.loc[:, 'NewCol'] = 0
    
    df
               A         B         C         D  NewCol
    0  -0.761269  0.477348  1.170614  0.752714       0
    1   1.217250 -0.930860 -0.769324 -0.408642       0
    2  -0.619679 -1.227659 -0.259135  1.700294       0
    4  -0.529529  0.000571  0.913779  1.395894       0
    6   0.757178  0.240012 -0.553820  1.177202       0
    7  -0.986128 -1.313843  0.788589 -0.707836       0
    9  -0.692013  0.671866  1.179466 -1.180351       0
    11 -0.143273 -0.503199 -1.328728  0.610552       0
    12 -0.923110 -1.365890 -1.366202 -1.185999       0
    13 -2.026832  0.273593 -0.440426 -0.627423       0
    14 -0.054503 -0.788866 -0.228088 -0.404783       0
    15  0.955298 -1.430019  1.434071 -0.088215       0
    16 -0.227946  0.047462  0.373573 -0.111675       0
    17  1.627912  0.043611  1.743403 -0.012714       0
    19  0.104425  0.037412  0.450598 -0.923387       0
    

提交回复
热议问题