I\'m trying to run over the parameters space of a 6 parameter function to study it\'s numerical behavior before trying to do anything complex with it so I\'m searching for a
In newer version of numpy
(>1.8.x), numpy.meshgrid() provides a much faster implementation:
@pv's solution
In [113]:
%timeit cartesian(([1, 2, 3], [4, 5], [6, 7]))
10000 loops, best of 3: 135 µs per loop
In [114]:
cartesian(([1, 2, 3], [4, 5], [6, 7]))
Out[114]:
array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
numpy.meshgrid() use to be 2D only, now it is capable of ND. In this case, 3D:
In [115]:
%timeit np.array(np.meshgrid([1, 2, 3], [4, 5], [6, 7])).T.reshape(-1,3)
10000 loops, best of 3: 74.1 µs per loop
In [116]:
np.array(np.meshgrid([1, 2, 3], [4, 5], [6, 7])).T.reshape(-1,3)
Out[116]:
array([[1, 4, 6],
[1, 5, 6],
[2, 4, 6],
[2, 5, 6],
[3, 4, 6],
[3, 5, 6],
[1, 4, 7],
[1, 5, 7],
[2, 4, 7],
[2, 5, 7],
[3, 4, 7],
[3, 5, 7]])
Note that the order of the final resultant is slightly different.