I have this DataFrame
and want only the records whose EPS
column is not NaN
:
>>> df
STK_ID
This question is already resolved, but...
...also consider the solution suggested by Wouter in his original comment. The ability to handle missing data, including dropna()
, is built into pandas explicitly. Aside from potentially improved performance over doing it manually, these functions also come with a variety of options which may be useful.
In [24]: df = pd.DataFrame(np.random.randn(10,3))
In [25]: df.iloc[::2,0] = np.nan; df.iloc[::4,1] = np.nan; df.iloc[::3,2] = np.nan;
In [26]: df
Out[26]:
0 1 2
0 NaN NaN NaN
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
4 NaN NaN 0.050742
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
8 NaN NaN 0.637482
9 -0.310130 0.078891 NaN
In [27]: df.dropna() #drop all rows that have any NaN values
Out[27]:
0 1 2
1 2.677677 -1.466923 -0.750366
5 -1.250970 0.030561 -2.678622
7 0.049896 -0.308003 0.823295
In [28]: df.dropna(how='all') #drop only if ALL columns are NaN
Out[28]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
4 NaN NaN 0.050742
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
8 NaN NaN 0.637482
9 -0.310130 0.078891 NaN
In [29]: df.dropna(thresh=2) #Drop row if it does not have at least two values that are **not** NaN
Out[29]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
In [30]: df.dropna(subset=[1]) #Drop only if NaN in specific column (as asked in the question)
Out[30]:
0 1 2
1 2.677677 -1.466923 -0.750366
2 NaN 0.798002 -0.906038
3 0.672201 0.964789 NaN
5 -1.250970 0.030561 -2.678622
6 NaN 1.036043 NaN
7 0.049896 -0.308003 0.823295
9 -0.310130 0.078891 NaN
There are also other options (See docs at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html), including dropping columns instead of rows.
Pretty handy!