Here is a solution in python that is efficient, documented and contains three unittests. It's professional-grade quality and ready to be dropped into your project in the form of a module as is.
import unittest
###############################################################################
def point_in_triangle(point, triangle):
"""Returns True if the point is inside the triangle
and returns False if it falls outside.
- The argument *point* is a tuple with two elements
containing the X,Y coordinates respectively.
- The argument *triangle* is a tuple with three elements each
element consisting of a tuple of X,Y coordinates.
It works like this:
Walk clockwise or counterclockwise around the triangle
and project the point onto the segment we are crossing
by using the dot product.
Finally, check that the vector created is on the same side
for each of the triangle's segments.
"""
# Unpack arguments
x, y = point
ax, ay = triangle[0]
bx, by = triangle[1]
cx, cy = triangle[2]
# Segment A to B
side_1 = (x - bx) * (ay - by) - (ax - bx) * (y - by)
# Segment B to C
side_2 = (x - cx) * (by - cy) - (bx - cx) * (y - cy)
# Segment C to A
side_3 = (x - ax) * (cy - ay) - (cx - ax) * (y - ay)
# All the signs must be positive or all negative
return (side_1 < 0.0) == (side_2 < 0.0) == (side_3 < 0.0)
###############################################################################
class TestPointInTriangle(unittest.TestCase):
triangle = ((22 , 8),
(12 , 55),
(7 , 19))
def test_inside(self):
point = (15, 20)
self.assertTrue(point_in_triangle(point, self.triangle))
def test_outside(self):
point = (1, 7)
self.assertFalse(point_in_triangle(point, self.triangle))
def test_border_case(self):
"""If the point is exactly on one of the triangle's edges,
we consider it is inside."""
point = (7, 19)
self.assertTrue(point_in_triangle(point, self.triangle))
###############################################################################
if __name__ == "__main__":
suite = unittest.defaultTestLoader.loadTestsFromTestCase(TestPointInTriangle)
unittest.TextTestRunner().run(suite)
There is an additional optional graphical test for the algorithm above to confirm its validity:
import random
from matplotlib import pyplot
from triangle_test import point_in_triangle
###############################################################################
# The area #
size_x = 64
size_y = 64
# The triangle #
triangle = ((22 , 8),
(12 , 55),
(7 , 19))
# Number of random points #
count_points = 10000
# Prepare the figure #
figure = pyplot.figure()
axes = figure.add_subplot(111, aspect='equal')
axes.set_title("Test the 'point_in_triangle' function")
axes.set_xlim(0, size_x)
axes.set_ylim(0, size_y)
# Plot the triangle #
from matplotlib.patches import Polygon
axes.add_patch(Polygon(triangle, linewidth=1, edgecolor='k', facecolor='none'))
# Plot the points #
for i in range(count_points):
x = random.uniform(0, size_x)
y = random.uniform(0, size_y)
if point_in_triangle((x,y), triangle): pyplot.plot(x, y, '.g')
else: pyplot.plot(x, y, '.b')
# Save it #
figure.savefig("point_in_triangle.pdf")
Producing the following graphic: