I\'m looking for some kind of formula or algorithm to determine the brightness of a color given the RGB values. I know it can\'t be as simple as adding the RGB values toget
The only answers that are accurate are the @jive-dadson and @EddingtonsMonkey answers, and in support @nils-pipenbrinck. The other answers (including the accepted) are linking to or citing sources that are either wrong, irrelevant, obsolete, or broken.
Because this thread appears highly in search engines, I am adding this answer to clarify the various misconceptions on the subject.
Brightness is a perceptual attribute, it does not have a direct measure.
Perceived lightness is measured by some vision models such as CIELAB, here L* (Lstar) is a measure of perceptual lightness, and is non-linear to approximate the human vision non-linear response curve.
Luminance is a linear measure of light, spectrally weighted for normal vision but not adjusted for non-linear perception of lightness.
Luma (Y´ prime) is a gamma encoded, weighted signal used in some video encodings. It is not to be confused with linear luminance.
Gamma or transfer curve (TRC) is a curve that is often similar to the perceptual curve, and is commonly applied to image data for storage or broadcast to reduce perceived noise and/or improve data utilization (and related reasons).
To determine perceived lightness, first convert gamma encoded R´G´B´ image values to linear luminance (L
or Y
) and then to non-linear perceived lightness (L*
)
...Because apparently it was lost somewhere...
Convert all sRGB 8 bit integer values to decimal 0.0-1.0
vR = sR / 255;
vG = sG / 255;
vB = sB / 255;
Convert a gamma encoded RGB to a linear value. sRGB (computer standard) for instance requires a power curve of approximately V^2.2, though the "accurate" transform is:
Where V´ is the gamma-encoded R, G, or B channel of sRGB.
Pseudocode:
function sRGBtoLin(colorChannel) {
// Send this function a decimal sRGB gamma encoded color value
// between 0.0 and 1.0, and it returns a linearized value.
if ( colorChannel <= 0.04045 ) {
return colorChannel / 12.92;
} else {
return pow((( colorChannel + 0.055)/1.055),2.4));
}
}
To find Luminance (Y) apply the standard coefficients for sRGB:
Pseudocode using above functions:
Y = (0.2126 * sRGBtoLin(vR) + 0.7152 * sRGBtoLin(vG) + 0.0722 * sRGBtoLin(vB))
Take luminance Y from above, and transform to L*
Pseudocode:
function YtoLstar(Y) {
// Send this function a luminance value between 0.0 and 1.0,
// and it returns L* which is "perceptual lightness"
if ( Y <= (216/24389) { // The CIE standard states 0.008856 but 216/24389 is the intent for 0.008856451679036
return Y * (24389/27); // The CIE standard states 903.3, but 24389/27 is the intent, making 903.296296296296296
} else {
return pow(Y,(1/3)) * 116 - 16;
}
}
L* is a value from 0 (black) to 100 (white) where 50 is the perceptual "middle grey". L* = 50 is the equivalent of Y = 18.4, or in other words an 18% grey card, representing the middle of a photographic exposure (Ansel Adams zone V).
IEC 61966-2-1:1999 Standard
Wikipedia sRGB
Wikipedia CIELAB
Wikipedia CIEXYZ
Charles Poynton's Gamma FAQ