How is Docker different from a virtual machine?

前端 未结 20 2655
闹比i
闹比i 2020-11-21 22:36

I keep rereading the Docker documentation to try to understand the difference between Docker and a full VM. How does it manage to provide a full filesystem, isolated network

20条回答
  •  再見小時候
    2020-11-21 23:21

    Most of the answers here talk about virtual machines. I'm going to give you a one-liner response to this question that has helped me the most over the last couple years of using Docker. It's this:

    Docker is just a fancy way to run a process, not a virtual machine.

    Now, let me explain a bit more about what that means. Virtual machines are their own beast. I feel like explaining what Docker is will help you understand this more than explaining what a virtual machine is. Especially because there are many fine answers here telling you exactly what someone means when they say "virtual machine". So...

    A Docker container is just a process (and its children) that is compartmentalized using cgroups inside the host system's kernel from the rest of the processes. You can actually see your Docker container processes by running ps aux on the host. For example, starting apache2 "in a container" is just starting apache2 as a special process on the host. It's just been compartmentalized from other processes on the machine. It is important to note that your containers do not exist outside of your containerized process' lifetime. When your process dies, your container dies. That's because Docker replaces pid 1 inside your container with your application (pid 1 is normally the init system). This last point about pid 1 is very important.

    As far as the filesystem used by each of those container processes, Docker uses UnionFS-backed images, which is what you're downloading when you do a docker pull ubuntu. Each "image" is just a series of layers and related metadata. The concept of layering is very important here. Each layer is just a change from the layer underneath it. For example, when you delete a file in your Dockerfile while building a Docker container, you're actually just creating a layer on top of the last layer which says "this file has been deleted". Incidentally, this is why you can delete a big file from your filesystem, but the image still takes up the same amount of disk space. The file is still there, in the layers underneath the current one. Layers themselves are just tarballs of files. You can test this out with docker save --output /tmp/ubuntu.tar ubuntu and then cd /tmp && tar xvf ubuntu.tar. Then you can take a look around. All those directories that look like long hashes are actually the individual layers. Each one contains files (layer.tar) and metadata (json) with information about that particular layer. Those layers just describe changes to the filesystem which are saved as a layer "on top of" its original state. When reading the "current" data, the filesystem reads data as though it were looking only at the top-most layers of changes. That's why the file appears to be deleted, even though it still exists in "previous" layers, because the filesystem is only looking at the top-most layers. This allows completely different containers to share their filesystem layers, even though some significant changes may have happened to the filesystem on the top-most layers in each container. This can save you a ton of disk space, when your containers share their base image layers. However, when you mount directories and files from the host system into your container by way of volumes, those volumes "bypass" the UnionFS, so changes are not stored in layers.

    Networking in Docker is achieved by using an ethernet bridge (called docker0 on the host), and virtual interfaces for every container on the host. It creates a virtual subnet in docker0 for your containers to communicate "between" one another. There are many options for networking here, including creating custom subnets for your containers, and the ability to "share" your host's networking stack for your container to access directly.

    Docker is moving very fast. Its documentation is some of the best documentation I've ever seen. It is generally well-written, concise, and accurate. I recommend you check the documentation available for more information, and trust the documentation over anything else you read online, including Stack Overflow. If you have specific questions, I highly recommend joining #docker on Freenode IRC and asking there (you can even use Freenode's webchat for that!).

提交回复
热议问题