This question pops up quite often in one form or another (see for example here or here). So I thought I\'d present it in a general form, and provide an answer which might se
A little bit simpler ... if you have the Neural Network toolbox you can simply use combvec:
vectors = {[1 2], [3 6 9], [10 20]};
combs = combvec(vectors{:}).' % Use cells as arguments
which returns a matrix in a slightly different order:
combs =
1 3 10
2 3 10
1 6 10
2 6 10
1 9 10
2 9 10
1 3 20
2 3 20
1 6 20
2 6 20
1 9 20
2 9 20
If you want the matrix that is in the question, you can use sortrows:
combs = sortrows(combvec(vectors{:}).')
% Or equivalently as per @LuisMendo in the comments:
% combs = fliplr(combvec(vectors{end:-1:1}).')
which gives
combs =
1 3 10
1 3 20
1 6 10
1 6 20
1 9 10
1 9 20
2 3 10
2 3 20
2 6 10
2 6 20
2 9 10
2 9 20
If you look at the internals of combvec
(type edit combvec
in the command window), you'll see that it uses different code than @LuisMendo's answer. I can't say which is more efficient overall.
If you happen to have a matrix whose rows are akin to the earlier cell array you can use:
vectors = [1 2;3 6;10 20];
vectors = num2cell(vectors,2);
combs = sortrows(combvec(vectors{:}).')