In the Python multiprocessing
library, is there a variant of pool.map
which supports multiple arguments?
text = "test"
def
In the official documentation states that it supports only one iterable argument. I like to use apply_async in such cases. In your case I would do:
from multiprocessing import Process, Pool, Manager
text = "test"
def harvester(text, case, q = None):
X = case[0]
res = text+ str(X)
if q:
q.put(res)
return res
def block_until(q, results_queue, until_counter=0):
i = 0
while i < until_counter:
results_queue.put(q.get())
i+=1
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
m = Manager()
q = m.Queue()
results_queue = m.Queue() # when it completes results will reside in this queue
blocking_process = Process(block_until, (q, results_queue, len(case)))
blocking_process.start()
for c in case:
try:
res = pool.apply_async(harvester, (text, case, q = None))
res.get(timeout=0.1)
except:
pass
blocking_process.join()