I need to find unique rows in a numpy.array
.
For example:
>>> a # I have
array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
For general purpose like 3D or higher multidimensional nested arrays, try this:
import numpy as np
def unique_nested_arrays(ar):
origin_shape = ar.shape
origin_dtype = ar.dtype
ar = ar.reshape(origin_shape[0], np.prod(origin_shape[1:]))
ar = np.ascontiguousarray(ar)
unique_ar = np.unique(ar.view([('', origin_dtype)]*np.prod(origin_shape[1:])))
return unique_ar.view(origin_dtype).reshape((unique_ar.shape[0], ) + origin_shape[1:])
which satisfies your 2D dataset:
a = np.array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
unique_nested_arrays(a)
gives:
array([[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
But also 3D arrays like:
b = np.array([[[1, 1, 1], [0, 1, 1]],
[[0, 1, 1], [1, 1, 1]],
[[1, 1, 1], [0, 1, 1]],
[[1, 1, 1], [1, 1, 1]]])
unique_nested_arrays(b)
gives:
array([[[0, 1, 1], [1, 1, 1]],
[[1, 1, 1], [0, 1, 1]],
[[1, 1, 1], [1, 1, 1]]])