I need to find unique rows in a numpy.array
.
For example:
>>> a # I have
array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
If you want to avoid the memory expense of converting to a series of tuples or another similar data structure, you can exploit numpy's structured arrays.
The trick is to view your original array as a structured array where each item corresponds to a row of the original array. This doesn't make a copy, and is quite efficient.
As a quick example:
import numpy as np
data = np.array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
ncols = data.shape[1]
dtype = data.dtype.descr * ncols
struct = data.view(dtype)
uniq = np.unique(struct)
uniq = uniq.view(data.dtype).reshape(-1, ncols)
print uniq
To understand what's going on, have a look at the intermediary results.
Once we view things as a structured array, each element in the array is a row in your original array. (Basically, it's a similar data structure to a list of tuples.)
In [71]: struct
Out[71]:
array([[(1, 1, 1, 0, 0, 0)],
[(0, 1, 1, 1, 0, 0)],
[(0, 1, 1, 1, 0, 0)],
[(1, 1, 1, 0, 0, 0)],
[(1, 1, 1, 1, 1, 0)]],
dtype=[('f0', '
Once we run numpy.unique
, we'll get a structured array back:
In [73]: np.unique(struct)
Out[73]:
array([(0, 1, 1, 1, 0, 0), (1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 1, 0)],
dtype=[('f0', '
That we then need to view as a "normal" array (_
stores the result of the last calculation in ipython
, which is why you're seeing _.view...
):
In [74]: _.view(data.dtype)
Out[74]: array([0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0])
And then reshape back into a 2D array (-1
is a placeholder that tells numpy to calculate the correct number of rows, give the number of columns):
In [75]: _.reshape(-1, ncols)
Out[75]:
array([[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
Obviously, if you wanted to be more concise, you could write it as:
import numpy as np
def unique_rows(data):
uniq = np.unique(data.view(data.dtype.descr * data.shape[1]))
return uniq.view(data.dtype).reshape(-1, data.shape[1])
data = np.array([[1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0]])
print unique_rows(data)
Which results in:
[[0 1 1 1 0 0]
[1 1 1 0 0 0]
[1 1 1 1 1 0]]