I understand Big-O notation, but I don\'t know how to calculate it for many functions. In particular, I\'ve been trying to figure out the computational complexity of the nai
I agree with pgaur and rickerbh, recursive-fibonacci's complexity is O(2^n).
I came to the same conclusion by a rather simplistic but I believe still valid reasoning.
First, it's all about figuring out how many times recursive fibonacci function ( F() from now on ) gets called when calculating the Nth fibonacci number. If it gets called once per number in the sequence 0 to n, then we have O(n), if it gets called n times for each number, then we get O(n*n), or O(n^2), and so on.
So, when F() is called for a number n, the number of times F() is called for a given number between 0 and n-1 grows as we approach 0.
As a first impression, it seems to me that if we put it in a visual way, drawing a unit per time F() is called for a given number, wet get a sort of pyramid shape (that is, if we center units horizontally). Something like this:
n *
n-1 **
n-2 ****
...
2 ***********
1 ******************
0 ***************************
Now, the question is, how fast is the base of this pyramid enlarging as n grows?
Let's take a real case, for instance F(6)
F(6) * <-- only once
F(5) * <-- only once too
F(4) **
F(3) ****
F(2) ********
F(1) **************** <-- 16
F(0) ******************************** <-- 32
We see F(0) gets called 32 times, which is 2^5, which for this sample case is 2^(n-1).
Now, we want to know how many times F(x) gets called at all, and we can see the number of times F(0) is called is only a part of that.
If we mentally move all the *'s from F(6) to F(2) lines into F(1) line, we see that F(1) and F(0) lines are now equal in length. Which means, total times F() gets called when n=6 is 2x32=64=2^6.
Now, in terms of complexity:
O( F(6) ) = O(2^6)
O( F(n) ) = O(2^n)