In R, mean()
and median()
are standard functions which do what you\'d expect. mode()
tells you the internal storage mode of the objec
Based on @Chris's function to calculate the mode or related metrics, however using Ken Williams's method to calculate frequencies. This one provides a fix for the case of no modes at all (all elements equally frequent), and some more readable method
names.
Mode <- function(x, method = "one", na.rm = FALSE) {
x <- unlist(x)
if (na.rm) {
x <- x[!is.na(x)]
}
# Get unique values
ux <- unique(x)
n <- length(ux)
# Get frequencies of all unique values
frequencies <- tabulate(match(x, ux))
modes <- frequencies == max(frequencies)
# Determine number of modes
nmodes <- sum(modes)
nmodes <- ifelse(nmodes==n, 0L, nmodes)
if (method %in% c("one", "mode", "") | is.na(method)) {
# Return NA if not exactly one mode, else return the mode
if (nmodes != 1) {
return(NA)
} else {
return(ux[which(modes)])
}
} else if (method %in% c("n", "nmodes")) {
# Return the number of modes
return(nmodes)
} else if (method %in% c("all", "modes")) {
# Return NA if no modes exist, else return all modes
if (nmodes > 0) {
return(ux[which(modes)])
} else {
return(NA)
}
}
warning("Warning: method not recognised. Valid methods are 'one'/'mode' [default], 'n'/'nmodes' and 'all'/'modes'")
}
Since it uses Ken's method to calculate frequencies the performance is also optimised, using AkselA's post I benchmarked some of the previous answers as to show how my function is close to Ken's in performance, with the conditionals for the various ouput options causing only minor overhead: