I wonder how to add regression line equation and R^2 on the ggplot
. My code is:
library(ggplot2)
df <- data.frame(x = c(1:100))
df$y <- 2
Inspired by the equation style provided in this answer, a more generic approach (more than one predictor + latex output as option) can be:
print_equation= function(model, latex= FALSE, ...){
dots <- list(...)
cc= model$coefficients
var_sign= as.character(sign(cc[-1]))%>%gsub("1","",.)%>%gsub("-"," - ",.)
var_sign[var_sign==""]= ' + '
f_args_abs= f_args= dots
f_args$x= cc
f_args_abs$x= abs(cc)
cc_= do.call(format, args= f_args)
cc_abs= do.call(format, args= f_args_abs)
pred_vars=
cc_abs%>%
paste(., x_vars, sep= star)%>%
paste(var_sign,.)%>%paste(., collapse= "")
if(latex){
star= " \\cdot "
y_var= strsplit(as.character(model$call$formula), "~")[[2]]%>%
paste0("\\hat{",.,"_{i}}")
x_vars= names(cc_)[-1]%>%paste0(.,"_{i}")
}else{
star= " * "
y_var= strsplit(as.character(model$call$formula), "~")[[2]]
x_vars= names(cc_)[-1]
}
equ= paste(y_var,"=",cc_[1],pred_vars)
if(latex){
equ= paste0(equ," + \\hat{\\varepsilon_{i}} \\quad where \\quad \\varepsilon \\sim \\mathcal{N}(0,",
summary(MetamodelKdifEryth)$sigma,")")%>%paste0("$",.,"$")
}
cat(equ)
}
The model
argument expects an lm
object, the latex
argument is a boolean to ask for a simple character or a latex-formated equation, and the ...
argument pass its values to the format
function.
I also added an option to output it as latex so you can use this function in a rmarkdown like this:
```{r echo=FALSE, results='asis'}
print_equation(model = lm_mod, latex = TRUE)
```
Now using it:
df <- data.frame(x = c(1:100))
df$y <- 2 + 3 * df$x + rnorm(100, sd = 40)
df$z <- 8 + 3 * df$x + rnorm(100, sd = 40)
lm_mod= lm(y~x+z, data = df)
print_equation(model = lm_mod, latex = FALSE)
This code yields:
y = 11.3382963933174 + 2.5893419 * x + 0.1002227 * z
And if we ask for a latex equation, rounding the parameters to 3 digits:
print_equation(model = lm_mod, latex = TRUE, digits= 3)
This yields: