How does Java handle integer underflows and overflows?
Leading on from that, how would you check/test that this is occurring?
By default, Java's int and long math silently wrap around on overflow and underflow. (Integer operations on other integer types are performed by first promoting the operands to int or long, per JLS 4.2.2.)
As of Java 8, java.lang.Math
provides addExact, subtractExact, multiplyExact, incrementExact, decrementExact and negateExact static methods for both int and long arguments that perform the named operation, throwing ArithmeticException on overflow. (There's no divideExact method -- you'll have to check the one special case (MIN_VALUE / -1
) yourself.)
As of Java 8, java.lang.Math also provides toIntExact to cast a long to an int, throwing ArithmeticException if the long's value does not fit in an int. This can be useful for e.g. computing the sum of ints using unchecked long math, then using toIntExact
to cast to int at the end (but be careful not to let your sum overflow).
If you're still using an older version of Java, Google Guava provides IntMath and LongMath static methods for checked addition, subtraction, multiplication and exponentiation (throwing on overflow). These classes also provide methods to compute factorials and binomial coefficients that return MAX_VALUE
on overflow (which is less convenient to check). Guava's primitive utility classes, SignedBytes
, UnsignedBytes
, Shorts
and Ints
, provide checkedCast
methods for narrowing larger types (throwing IllegalArgumentException on under/overflow, not ArithmeticException), as well as saturatingCast
methods that return MIN_VALUE
or MAX_VALUE
on overflow.