How would you go about testing all possible combinations of additions from a given set N
of numbers so they add up to a given final number?
A brief exam
This problem can be solved with a recursive combinations of all possible sums filtering out those that reach the target. Here is the algorithm in Python:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
This type of algorithms are very well explained in the following Standford's Abstract Programming lecture - this video is very recommendable to understand how recursion works to generate permutations of solutions.
Edit
The above as a generator function, making it a bit more useful. Requires Python 3.3+ because of yield from
.
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
Here is the Java version of the same algorithm:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList numbers, int target, ArrayList partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i remaining = new ArrayList();
int n = numbers.get(i);
for (int j=i+1; j partial_rec = new ArrayList(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList(Arrays.asList(numbers)),target);
}
}
It is exactly the same heuristic. My Java is a bit rusty but I think is easy to understand.
C# conversion of Java solution: (by @JeremyThompson)
public static void Main(string[] args)
{
List numbers = new List() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List numbers, int target)
{
sum_up_recursive(numbers, target, new List());
}
private static void sum_up_recursive(List numbers, int target, List partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List remaining = new List();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List partial_rec = new List(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby solution: (by @emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
Edit: complexity discussion
As others mention this is an NP-hard problem. It can be solved in exponential time O(2^n), for instance for n=10 there will be 1024 possible solutions. If the targets you are trying to reach are in a low range then this algorithm works. So for instance:
subset_sum([1,2,3,4,5,6,7,8,9,10],100000)
generates 1024 branches because the target never gets to filter out possible solutions.
On the other hand subset_sum([1,2,3,4,5,6,7,8,9,10],10)
generates only 175 branches, because the target to reach 10
gets to filter out many combinations.
If N
and Target
are big numbers one should move into an approximate version of the solution.