Fundamental difference between Hashing and Encryption algorithms

前端 未结 13 2043
日久生厌
日久生厌 2020-11-21 06:35

I see a lot of confusion between hashes and encryption algorithms and I would like to hear some more expert advice about:

  1. When to use hashes vs encryptions<

13条回答
  •  轻奢々
    轻奢々 (楼主)
    2020-11-21 07:08

    Cryptography deals with numbers and strings. Basically every digital thing in the entire universe are numbers. When I say numbers, its 0 & 1. You know what they are, binary. The images you see on screen, the music that you listen through your earphone, everything are binaries. But our ears and eyes will not understand binaries right? Only brain could understand that, and even if it could understand binaries, it can’t enjoy binaries. So we convert the binaries to human understandable formats such as mp3,jpg,etc. Let’s term the process as Encoding. It’s two way process and can be easily decoded back to its original form.

    Hashing

    Hashing is another cryptography technique in which a data once converted to some other form can never be recovered back. In Layman’s term, there is no process called de-hashing. There are many hash functions to do the job such as sha-512, md5 and so on.

    If the original value cannot be recovered, then where do we use this? Passwords! When you set up a password for your mobile or PC, a hash of your password is created and stored in a secure place. When you make a login attempt next time, the entered string is again hashed with the same algorithm (hash function) and the output is matched with the stored value. If it’s the same, you get logged in. Otherwise you are thrown out.

    Credits: wikimedia By applying hash to the password, we can ensure that an attacker will never get our password even if he steal the stored password file. The attacker will have the hash of the password. He can probably find a list of most commonly used passwords and apply sha-512 to each of it and compare it with the value in his hand. It is called the dictionary attack. But how long would he do this? If your password is random enough, do you think this method of cracking would work? All the passwords in the databases of Facebook, Google and Amazon are hashed, or at least they are supposed to be hashed.

    Then there is Encryption

    Encryption lies in between hashing and encoding. Encoding is a two way process and should not be used to provide security. Encryption is also a two way process, but original data can be retrieved if and only if the encryption key is known. If you don’t know how encryption works, don’t worry, we will discuss the basics here. That would be enough to understand the basics of SSL. So, there are two types of Encryption namely Symmetric and Asymmetric encryption.

    Symmetric Key Encryption

    I am trying to keep things as simple as I could. So, let’s understand the symmetric encryption by means of a shift algorithm. This algorithm is used to encrypt alphabets by shifting the letters to either left or right. Let’s take a string CRYPTO and consider a number +3. Then, the encrypted format of CRYPTO will be FUBSWR. That means each letter is shifted to right by 3 places. Here, the word CRYPTO is called Plaintext, the output FUBSWR is called the Ciphertext, the value +3 is called the Encryption key (symmetric key) and the whole process is a cipher. This is one of the oldest and basic symmetric key encryption algorithm and its first usage was reported during the time of Julius Caesar. So, it was named after him and it is the famous Caesar Cipher. Anyone who knows the encryption key and can apply the reverse of Caesar’s algorithm and retrieve the original Plaintext. Hence it is called a Symmetric Encryption.

    Asymmetric Key Encryption

    We know that, in Symmetric encryption same key is used for both encryption and decryption. Once that key is stolen, all the data is gone. That’s a huge risk and we need more complex technique. In 1976, Whitfield Diffie and Martin Hellman first published the concept of Asymmetric encryption and the algorithm was known as Diffie–Hellman key exchange. Then in 1978, Ron Rivest, Adi Shamir and Leonard Adleman of MIT published the RSA algorithm. These can be considered as the foundation of Asymmetric cryptography.

    As compared to Symmetric encryption, in Asymmetric encryption, there will be two keys instead of one. One is called the Public key, and the other one is the Private key. Theoretically, during initiation we can generate the Public-Private key pair to our machine. Private key should be kept in a safe place and it should never be shared with anyone. Public key, as the name indicates, can be shared with anyone who wish to send encrypted text to you. Now, those who have your public key can encrypt the secret data with it. If the key pair were generated using RSA algorithm, then they should use the same algorithm while encrypting the data. Usually the algorithm will be specified in the public key. The encrypted data can only be decrypted with the private key which is owned by you.

    Source: SSL/TLS for dummies part 1 : Ciphersuite, Hashing,Encryption | WST (https://www.wst.space/ssl-part1-ciphersuite-hashing-encryption/)

提交回复
热议问题