Are you talking about lambda functions? Like
lambda x: x**2 + 2*x - 5
Those things are actually quite useful. Python supports a style of programming called functional programming where you can pass functions to other functions to do stuff. Example:
mult3 = filter(lambda x: x % 3 == 0, [1, 2, 3, 4, 5, 6, 7, 8, 9])
sets mult3
to [3, 6, 9]
, those elements of the original list that are multiples of 3. This is shorter (and, one could argue, clearer) than
def filterfunc(x):
return x % 3 == 0
mult3 = filter(filterfunc, [1, 2, 3, 4, 5, 6, 7, 8, 9])
Of course, in this particular case, you could do the same thing as a list comprehension:
mult3 = [x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9] if x % 3 == 0]
(or even as range(3,10,3)
), but there are many other, more sophisticated use cases where you can't use a list comprehension and a lambda function may be the shortest way to write something out.
Returning a function from another function
>>> def transform(n):
... return lambda x: x + n
...
>>> f = transform(3)
>>> f(4)
7
This is often used to create function wrappers, such as Python's decorators.
Combining elements of an iterable sequence with reduce()
>>> reduce(lambda a, b: '{}, {}'.format(a, b), [1, 2, 3, 4, 5, 6, 7, 8, 9])
'1, 2, 3, 4, 5, 6, 7, 8, 9'
Sorting by an alternate key
>>> sorted([1, 2, 3, 4, 5, 6, 7, 8, 9], key=lambda x: abs(5-x))
[5, 4, 6, 3, 7, 2, 8, 1, 9]
I use lambda functions on a regular basis. It took me a while to get used to them, but eventually I came to understand that they're a very valuable part of the language.