I needed to write a weighted version of random.choice (each element in the list has a different probability for being selected). This is what I came up with:
I needed to do something like this really fast really simple, from searching for ideas i finally built this template. The idea is receive the weighted values in a form of a json from the api, which here is simulated by the dict.
Then translate it into a list in which each value repeats proportionally to it's weight, and just use random.choice to select a value from the list.
I tried it running with 10, 100 and 1000 iterations. The distribution seems pretty solid.
def weighted_choice(weighted_dict):
"""Input example: dict(apples=60, oranges=30, pineapples=10)"""
weight_list = []
for key in weighted_dict.keys():
weight_list += [key] * weighted_dict[key]
return random.choice(weight_list)