I needed to write a weighted version of random.choice (each element in the list has a different probability for being selected). This is what I came up with:
Another way of doing this, assuming we have weights at the same index as the elements in the element array.
import numpy as np
weights = [0.1, 0.3, 0.5] #weights for the item at index 0,1,2
# sum of weights should be <=1, you can also divide each weight by sum of all weights to standardise it to <=1 constraint.
trials = 1 #number of trials
num_item = 1 #number of items that can be picked in each trial
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# gives number of times an item was selected at a particular index
# this assumes selection with replacement
# one possible output
# selected_item_arr
# array([[0, 0, 1]])
# say if trials = 5, the the possible output could be
# selected_item_arr
# array([[1, 0, 0],
# [0, 0, 1],
# [0, 0, 1],
# [0, 1, 0],
# [0, 0, 1]])
Now let's assume, we have to sample out 3 items in 1 trial. You can assume that there are three balls R,G,B present in large quantity in ratio of their weights given by weight array, the following could be possible outcome:
num_item = 3
trials = 1
selected_item_arr = np.random.multinomial(num_item, weights, trials)
# selected_item_arr can give output like :
# array([[1, 0, 2]])
you can also think number of items to be selected as number of binomial/ multinomial trials within a set. So, the above example can be still work as
num_binomial_trial = 5
weights = [0.1,0.9] #say an unfair coin weights for H/T
num_experiment_set = 1
selected_item_arr = np.random.multinomial(num_binomial_trial, weights, num_experiment_set)
# possible output
# selected_item_arr
# array([[1, 4]])
# i.e H came 1 time and T came 4 times in 5 binomial trials. And one set contains 5 binomial trails.