I am trying to use tensorboard to watch the learning of a convolutional neural net. I am doing good with the tf.summary.merge_all function to create a merged summary. However, I
I figured it out. I need to give the summaries names before merging. The code below solves the problem:
with tf.name_scope('Cost'):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=y_logits, labels=y))
opt = tf.train.AdamOptimizer(learning_rate=0.000003)
optimizer = opt.minimize(cross_entropy)
grads = opt.compute_gradients(cross_entropy, [b_fc_loc2])
cost_sum = tf.summary.scalar('val_cost', cross_entropy)
training_cost_sum = tf.summary.scalar('train_cost', cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
train_accuracy = accuracy
accuracy_sum = tf.summary.scalar('val_accuracy', accuracy)
training_accuracy_sum = tf.summary.scalar('train_accuracy', accuracy)
with tf.Session() as sess:
writer = tf.summary.FileWriter('./logs/{}/{}'.format(session_name, run_num), sess.graph)
sess.run(tf.global_variables_initializer())
train_merged = tf.summary.merge([training_accuracy_sum, training_cost_sum])