I would like to know some solutions to such a problem.
It is given a number lets say 16 and you have to arrange a matrix this way
1 2 3 4
12 13 14 5
OK, I'm just posting this answer for fun.
The other solutions use variables to accumulate information iteratively. I wanted to try a functional solution, where the number of any table cell (or alternatively, the table cell for any number) could be known without iterating through any others.
Here it is in javascript. I know, it's not pure functional programming, nor is it extremely elegant, but the computation of the number for each table cell is done without reference to prior iterations. So it's multi-core friendly.
Now we just need somebody to do it in haskell. ;-)
BTW this was written before the comment that the 1 should end up in a certain location that is not necessarily the northwest corner (still unspecified as of now).
Since somebody mentioned the Ulam spiral, just for kicks I added code to put a red border around the primes (even though the spiral is inside out). Interestingly enough, there do seem to be diagonal streaks of primes, though I don't know if it's significantly different from the streaks you'd get with random odd numbers.
The code:
// http://stackoverflow.com/questions/3584557/logical-problem
/* Return a square array initialized to the numbers 1...n2, arranged in a spiral */
function spiralArray(n2) {
var n = Math.round(Math.sqrt(n2));
if (n * n != n2) {
alert('' + n2 + ' is not a square.');
return 0;
}
var h = n / 2;
var arr = new Array(n);
var i, j;
for (i = 0; i < n; i++) {
arr[i] = new Array(n);
for (j = 0; j < n; j++) {
// upper rows and lower rows of spiral already completed
var ur = Math.min(i, n - i, j + 1, n - j, h),
lr = Math.min(i, n - i - 1, j + 1, n - j - 1, h);
// count of cells in completed rows
// n + n-2 + n-4 ... n - 2*(ur-1) = ur*n - (ur*2*(ur - 1)/2) = ur * (n - ur + 1)
// n-1 + n-3 + ... n-1 - 2*(lr-1) = lr*(n-1) - (lr*2*(lr - 1)/2) = lr * (n - 1 - lr + 1)
var compr = ur * (n - ur + 1) + lr * (n - lr);
// e.g. ur = 2, cr = 2*(5 - 2 + 1) = 2*4 = 8
// left columns and right columns of spiral already completed
var rc = Math.min(n - j - 1, i, n - i, j + 1, h),
lc = Math.min(n - j - 1, i, n - i - 1, j, h);
// count of cells in completed columns
var compc = rc * (n - rc) + lc * (n - lc - 1);
// offset along current row/column
var offset;
// Which direction are we going?
if (ur > rc) {
// going south
offset = i - (n - j) + 1;
} else if (rc > lr) {
// going west
offset = i - j;
} else if (lr > lc) {
// going north
offset = n - i - 1 - j;
} else {
// going east
offset = j - i + 1;
}
arr[i][j] = compr + compc + offset;
}
}
return arr;
}
function isPrime(n) {
// no fancy sieve... we're not going to be testing large primes.
var lim = Math.floor(Math.sqrt(n));
var i;
if (n == 2) return true;
else if (n == 1 || n % 2 == 0) return false;
for (i = 3; i <= lim; i += 2) {
if (n % i == 0) return false;
}
return true;
}
// display the given array as a table, with fancy background shading
function writeArray(arr, tableId, m, n) {
var tableElt = document.getElementById(tableId);
var s = '';
var scale = 1 / (m * n);
var i, j;
for (i = 0; i < m; i++) {
s += '';
for (j = 0; j < n; j++) {
var border = isPrime(arr[i][j]) ? "border: solid red 1px;" : "";
s += '' + arr[i][j] + ' ';
}
s += ' ';
}
s += '
';
tableElt.innerHTML = s;
}
function tryIt(tableId) {
var sizeElt = document.getElementById('size');
var size = parseInt(sizeElt.value);
writeArray(spiralArray(size * size), 'spiral', size, size);
}
The HTML page to exercise it: