Say I have an arbitrary numpy matrix that looks like this:
arr = [[ 6.0 12.0 1.0]
[ 7.0 9.0 1.0]
[ 8.0 7.0 1.0]
[ 4.0 3.0
You can do:
for x in sorted(np.unique(arr[...,2])):
results.append([np.average(arr[np.where(arr[...,2]==x)][...,0]),
np.average(arr[np.where(arr[...,2]==x)][...,1]),
x])
Testing:
>>> arr
array([[ 6., 12., 1.],
[ 7., 9., 1.],
[ 8., 7., 1.],
[ 4., 3., 2.],
[ 6., 1., 2.],
[ 2., 5., 2.],
[ 9., 4., 3.],
[ 2., 1., 4.],
[ 8., 4., 4.],
[ 3., 5., 4.]])
>>> results=[]
>>> for x in sorted(np.unique(arr[...,2])):
... results.append([np.average(arr[np.where(arr[...,2]==x)][...,0]),
... np.average(arr[np.where(arr[...,2]==x)][...,1]),
... x])
...
>>> results
[[7.0, 9.3333333333333339, 1.0], [4.0, 3.0, 2.0], [9.0, 4.0, 3.0], [4.333333333333333, 3.3333333333333335, 4.0]]
The array arr
does not need to be sorted, and all the intermediate arrays are views (ie, not new arrays of data). The average is calculated efficiently directly from those views.